Nothing
initialEnvironment.oneWay <- function()
{
ifc <- new.env(parent=baseenv())
ifc$data <- new.env(parent=baseenv())
ifc$data$vars <- list(dv="dependent variable")
ifc$data$cols <- list(categorical="categorical")
ifc$data$check <- check.temp
ifc$models <- new.env(parent=baseenv())
ifc$models$create.default <- BayesFactors.gibi:::create.model
ifc$models$create.description <- BayesFactors.gibi:::create.description
ifc$models$create.effects <- BayesFactors.gibi:::create.effects
ifc$analysis <- new.env(parent=baseenv())
ifc$analysis$settings <- list(MCMC=list(
'MCMC iterations'=1000,
'Burnin iterations'=200
))
ifc$analysis$create.description <- BayesFactors.gibi:::create.description
ifc$analysis$run <- BayesFactors.gibi:::analysisOneWay
ifc$pluginVersion = .pluginVersion
ifc$gibiVersion = .gibiVersion
ifc$pluginName = .pluginName
return(ifc)
}
create.effects <- function(columns)
{
return(columns)
}
create.description <- function(model)
{
if(!is.null(model$results))
{
return(list("IV" = model$level.one[["Location"]][[1]],
"Levels" = nlevels(as.factor(model$data$independent)),
"BF" = model$results$rslt$inferentials[[1]],
"post. mean mu" = model$results$rslt$posteriorMeans[[1]][1][[1]],
"post. sd mu" = model$results$rslt$posteriorSD[[1]][1][[1]],
#"MC error mu" = model$results$rslt$MCerror[[1]][1][[1]],
"scale" = model$prior[["Effect size"]]$scale
)
)
}else{
return(list(#"IV" = model$level.one[["Location"]][[1]],
"Levels" = nlevels(as.factor(model$data$independent)),
"BF" = "",
"post. mean delta" = "",
"post. sd delta" = "",
#"MC error delta" = "
"scale" = ""
)
)
}
}
create.model <- function() {
list(
level.one = list("Location"=list()),
prior = list("Effect size"=list("scale"=1))
)
}
initialEnvironment.oneWay.old <- function(pluginEnv)
{
pluginEnv$pluginVersion = .pluginVersion
pluginEnv$gibiVersion = .gibiVersion
pluginEnv$pluginName = .pluginName
pluginEnv$ifc <- list(
intro <- list(
),
data <- list(
require <- list(
response <- list(
name<-"Dependent",
short<-"Dependent Variable",
long<-"The dependent, or response, variable is...",
checkFunc <- .checkNumConvert,
checkFuncArgs=list()
)
),
interest <- list(
maxElements <- Inf,
minElements <- 1,
types <- list(
independent<-list(
name="Independent",
short="Independent Variable",
long="The independent, or predictor, variable is...",
checkFunc <- .checkNumLevels,
checkFuncArgs=list(minLevs=2)
)
)
)
),
mdl <- list(
# The effectsListFunc() function will take the columns of interest as an argument
# and return a list of possible effects.
effectsListFunc <- .pluginEffectsList,
priors <- list(
scale <- list(
parameter="delta",
name="Scale (r)",
short="Effect size scale",
long="The scale on the Cauchy prior on effect size.",
optionsList=NULL,
sliderRange=NULL,
default=1,
checkFunc <- .checkPositive,
checkFuncArgs=list()
)
),
# List of parameters
delta <- list(
togglable=FALSE,
name="delta",
short="Effect size",
long="Effect size (mu/sigma)",
maxElements=1,
minElements=1,
checkFunc <- .pluginDeltaCheck,
checkFuncArgs=list(),
# addFrom determines where the effects are moved from
addFrom=".internalEffects",
# addAction determines how the effects are grouped
# other possible option is "group"
addAction="plus"
)
),
anls <- list(
integrate <- list(
name="Method",
short="Integration method",
long="The type of integration method. MCMC is slow, but provides estimates of marginal posteriors. Quadrature is fast, but only provides the Bayes factor.",
exclusiveGroup=list(
MCMC <- list(
name="MCMC",
short="MCMC Options",
long="Settings related to MCMC sampling",
checkFunc <- .pluginCheckMCMC,
checkFuncArgs <- list(),
sortPriority=1,
group=list(
iterations <- list(
name="Iterations",
short="Number of MCMC iterations",
long="Number of MCMC iterations (0 for no MCMC; only the Bayes factor will be computed).",
default <- 1000,
checkFunc <- .checkNonNegative,
checkFuncArgs=list(),
sortPriority=1
),
burnin <- list(
name="Burn-in",
short="Number of burn-in iterations",
long="Number of initial iterations to throw away",
default <- 100,
checkFunc <- .checkNonNegative,
checkFuncArgs=list(),
sortPriority=2
)
)
),
quadrature <- list(
name="Quadrature",
short="Gaussian quadrature",
long="No settings available for Gaussian quadrature method."
)
)
),
tone <- list(
name="Tone",
short="Tone when done?",
long="Sound a tone when the analysis is finished?",
default="yes",
optionsList=c("yes","no"),
checkFunc <- NULL,
checkFuncArgs=list(),
sortPriority=2
)
),
diag <- list(
),
rslt <- list(
),
plt <- list(
),
save <- list(
)
)
pluginEnv$usr <- list(
data=list(),
mdls=list()
)
} # end initialEnvironment
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.