Description Usage Arguments Details Value Author(s) References See Also Examples
Simulation of spatial and spatio-temporal Gaussian, binary and max-stable random fields. The function returns one or more replications of a random field for a given covariance model and covariance parameters.
1 2 3 |
coordx |
A numeric (d x 2)-matrix (where
|
coordy |
A numeric vector giving 1-dimension of
spatial coordinates; |
coordt |
A numeric vector giving 1-dimension of
temporal coordinates. At the moment implemented only for the
Gaussian case. Optional argument, the default is |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
distance |
String; the name of the spatial distance. The default
is |
grid |
Logical; if |
model |
String; the type of random field and therefore the densities associated to the likelihood
objects. |
numblock |
Numeric; the observation size of the underlying random field. Only in case of max-stable random fields. |
param |
A list of parameter values required in the simulation procedure of random fields, see Examples. |
replicates |
Numeric; a positive integer denoting the number of independent and identically distributed (iid) replications of a spatial or spatial-temporal random field. Optional argument, the default value is 1 then a single realisation is considered. |
threshold |
Numeric; a value indicating a threshold for the
binary random field. Optional in the case that |
Note that this function is also interfaced to the R package RandomFields,
using fast routines therein developed for the simulation of random fields, see
for example
GaussRF,
MaxStableRF, ect.
Returns an object of class RFsim.
An object of class RFsim is a list containing
at most the following components:
coordx |
A d-dimensional vector of spatial coordinates; |
coordy |
A d-dimensional vector of spatial coordinates; |
coordt |
A t-dimensional vector of temporal coordinates; |
corrmodel |
The correlation model; see |
data |
The vector or matrix or array of data, see
|
distance |
The type of spatial distance; |
model |
The type of random field, see |
numcoord |
The number of spatial coordinates; |
numtime |
The number the temporal realisations of the random field; |
param |
The vector of parameters' estimates; |
randseed |
The seed used for the random simulation; |
replicates |
The number of the iid replicatations of the random field; |
spacetime |
|
threshold |
The threshold for deriving the binary random field. |
Simone Padoan, simone.padoan@unibocconi.it, http://faculty.unibocconi.it/simonepadoan; Moreno Bevilacqua, moreno.bevilacqua@uv.cl, https://sites.google.com/a/uv.cl/moreno-bevilacqua/home.
Padoan, S. A. and Bevilacqua, M. (2015). Analysis of Random Fields Using CompRandFld. Journal of Statistical Software, 63(9), 1–27.
Covmatrix,
GaussRF,
MaxStableRF
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | library(CompRandFld)
library(RandomFields)
library(mapproj)
library(fields)
################################################################
###
### Example 1. Simulation of a Gaussian random field.
### Gaussian random fields with Whittle-Matern correlation.
### One spatial replication.
###
###
###############################################################
# Define the spatial-coordinates of the points:
x <- runif(500, 0, 2)
y <- runif(500, 0, 2)
set.seed(261)
# Simulation of a spatial Gaussian random field:
data <- RFsim(x, y, corrmodel="matern", param=list(smooth=0.5,
mean=0,sill=1,scale=0.2,nugget=0))$data
################################################################
###
### Example 2. Simulation of a binary random field based on
### the latent Gaussian random field with exponential correlation.
### One spatial replication on a regular grid
###
###
###############################################################
# Define the spatial-coordinates of the points:
x <- seq(0, 1, 0.05)
y <- seq(0, 1, 0.05)
set.seed(251)
# Simulation of a spatial binary random field:
sim <- RFsim(x, y, corrmodel="exponential", grid=TRUE,
model="BinaryGauss", threshold=0,
param=list(nugget=0,mean=0,scale=.1,sill=1))
image(x,y,sim$data,col=terrain.colors(100))
################################################################
###
### Example 3. Simulation of a max-stable random
### extremal-t type with exponential correlation.
### One spatial replication on a regular grid
###
###
###############################################################
set.seed(341)
x <- seq(0, 1, 0.02)
y <- seq(0, 1, 0.02)
# Simulation of a spatial binary random field:
sim <- RFsim(x, y, corrmodel="exponential", grid=TRUE, model="ExtT",
numblock=500, param=list(nugget=0,mean=0,scale=.1,
sill=1,df=5))
image.plot(x,y,log(sim$data))
################################################################
###
### Example 4. Simulation of a Gaussian random field.
### with double exponential correlation.
### One spatio-temporal replication.
###
###
###############################################################
# Define the spatial-coordinates of the points:
x <- seq(0, 1, 0.1)
y <- seq(0, 1, 0.1)
# Define the temporal-coordinates:
times <- seq(1, 3, 1)
#
# Simulation of a spatial Gaussian random field:
sim <- RFsim(x, y, times, corrmodel="exp_exp", grid=TRUE,
param=list(nugget=0,mean=0,scale_s=0.3,
scale_t=0.5,sill=1))$data
# Spatial simulated data at first temporal instant
sim[,,1]
################################################################
###
### Example 5. Simulation of a Gaussian random field
### with exponential correlation on a portion of the earth surface
### One spatial replication.
###
###
###############################################################
lon_region<-c(-40,40)
lat_region<-c(-40,40)
#
lon<-seq(min(lon_region),max(lon_region),2)
lat<-seq(min(lat_region),max(lat_region),2)
#
data<-RFsim(coordx=lon,coordy=lat,corrmodel="exponential",
distance="Geod",grid=TRUE,param=list(nugget=0,mean=0
,scale=8000,sill=1))$data
image.plot(lon,lat,data,xlab="Longitude",ylab="Latitude")
map(database="world",xlim=lon_region,ylim=lat_region,add=TRUE)
|

Loading required package: sp
Loading required package: RandomFieldsUtils
Attaching package: 'RandomFields'
The following object is masked from 'package:RandomFieldsUtils':
RFoptions
Loading required package: maps
Loading required package: spam
Loading required package: dotCall64
Loading required package: grid
Spam version 2.2-2 (2019-03-07) is loaded.
Type 'help( Spam)' or 'demo( spam)' for a short introduction
and overview of this package.
Help for individual functions is also obtained by adding the
suffix '.spam' to the function name, e.g. 'help( chol.spam)'.
Attaching package: 'spam'
The following objects are masked from 'package:base':
backsolve, forwardsolve
See https://github.com/NCAR/Fields for
an extensive vignette, other supplements and source code
Warning messages:
1: In RandomFields::RFparameters(Storing = TRUE, PrintLevel = 1) :
The function is obsolete. Use 'RFoptions' instead.
2: In RandomFields::GaussRF(x = initparam$coordx, y = initparam$coordy, :
The function is obsolete. Use 'RFsimulate' instead.
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.9223940 0.30095477 0.40964995 0.91663621 1.931617440 1.6026049
[2,] 1.6409078 0.32642028 0.21445962 0.45864417 0.377860017 1.4668482
[3,] 0.7314876 1.10723890 0.07978236 0.61014840 -0.047291793 0.3963501
[4,] 0.3836722 0.36581006 -0.67844116 -0.18028133 -0.002249197 0.1451865
[5,] -0.3351690 0.08378569 -0.48840527 -0.15560243 0.968769420 1.6257795
[6,] 0.1148653 0.32548079 -0.93110371 -0.09962689 0.221159168 0.4808245
[7,] -0.7273573 -0.71882001 -0.41903596 -0.59467175 -0.600302312 -0.3679111
[8,] -0.7700930 -0.38159334 -0.50123552 -0.51089887 -0.597197773 -1.1799146
[9,] 0.0461754 0.21379873 0.71973787 -0.48487066 0.020964399 -0.3270232
[10,] -0.1692514 0.73675199 0.58485622 1.34802440 -0.147042067 -0.2146536
[11,] 2.4904466 2.52227083 1.61567154 0.63179305 -0.015514392 0.8259750
[,7] [,8] [,9] [,10] [,11]
[1,] 1.06404919 1.2124254 0.79459407 1.04054027 0.7369360
[2,] 0.99207459 1.7757777 1.37140622 1.09491858 0.3740511
[3,] 0.49380403 0.8407949 0.86398104 0.23143718 0.6993849
[4,] 0.07859698 1.4913128 1.45786054 0.16451392 1.2432092
[5,] 1.54919931 1.6371512 2.20387253 0.94538811 0.9217018
[6,] 1.68774621 -0.3773446 0.77509517 0.16526951 0.4287533
[7,] 0.29058317 0.5292003 0.09571764 0.01003232 0.7359176
[8,] -0.67686294 0.5683545 1.04658343 1.32212524 1.5057638
[9,] -0.05764332 0.7829094 1.55854845 1.97213767 1.7852469
[10,] -0.01513049 0.2478771 0.84146570 1.26912980 0.6758533
[11,] 0.28541850 0.6895920 1.53725236 0.56494878 1.4580636
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.