Description Usage Arguments Details Value Author(s) References See Also Examples
Computes the standard normal (i.e., chi-square) confidence intervals for a sample variance or standard deviation.
1 2 3 4 |
object |
a numeric vector possibly with a "df" or "df.residuals" attribute assumed to represent a sample variance, possibly computed as root mean square of residuals from a model. |
parm |
degrees of freedom in the estimated variance or standard deviation. |
level |
the confidence level required |
... |
optional arguments not used. |
1. If object is not numeric, throw
an error.
2. If parm is missing, look for an
attribute of object starting with "df".
If present, use that for parm. If
parm is absent or not numeric, throw
an error.
3. replicate object, parm, and
level to the same length. Issue a warning
if the longest is not a multiple of the others.
4. alph2 <- (1-level)/2
5. Qntls <- cbind(lower=qchisq(alph2, parm, lower=FALSE), upper=qchisq(alph2, parm))
6. CI <- (object*parm/Qntls)
7. attr(CI, 'level') <- Level
7. return(CI)
a matrix with columns "lower" and "upper",
nrow = the longest of the lengths
of object, parm, and level,
and an attribute "level".
Spencer Graves
Wikipedia, "Standard deviation", accessed 2016-07-06.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | ##
## 1. simple examples
##
(CI.v <- confint.var(c(1,1,4), c(1, 9, 9)))
(CI.s <- confint.sd(c(1,1,2), c(1, 9, 9)))
# Compare with the examples on Wikipedia
all.equal(CI.s, sqrt(CI.v))
WikipEx <- t(matrix(c(0.45, 31.9, 0.69, 1.83, 1.38, 3.66),
nrow=2))
colnames(WikipEx) <- c('lower', 'upper')
(dCI <- (CI.s-WikipEx))
#Confirm within 2-digit roundoff
max(abs(dCI))<0.0102
##
## 2. test df attributes
##
v <- c(1,1,4)
attr(v, 'df.') <- c(1, 9, 9)
class(v) <- 'var'
vCI <- confint(v)
# check
all.equal(vCI, CI.v)
s <- sqrt(v)
class(s) <- 'sd'
sCI <- confint(s)
# check
all.equal(sCI, CI.s)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.