nullModelLogLike: Calculation of loglikelihood for null model in differential...

Description Usage Arguments Details Value Author(s) References Examples

Description

This function calculates the loglikelihood, BIC, and ICL for the null model, i.e., a single cluster of non-differentially expressed genes.

Usage

1
nullModelLogLike(counts, conds, norm="TMM")

Arguments

counts

(n x q) matrix of observed counts for n genes and q samples

conds

Vector of length q defining the condition (treatment group) for each variable (column) in counts

norm

The estimator to be used for the library size parameter: “TC” for total count, “UQ” for upper quantile, “Med” for median, “DESeq” for the normalization method in the DESeq package, and “TMM” for the TMM normalization method.

Details

This function implements the calculation of the loglikelihood, BIC, and ICL for the model containing a single cluster of non-differentially expressed genes. Its main utility is to enable model selection between this null model and a model containing at least one potential cluster of differentially expressed genes.

Value

logLike

Loglikelihood value

BIC

Value of BIC

ICL

Value of ICL criterion

Author(s)

Andrea Rau <andrea.rau@jouy.inra.fr>

References

S. Balzergue, G. Rigaill, V. Brunaud, E. Blondet, A. Rau, O. Rogier, J. Caius, C. Maugis-Rabusseau, L. Soubigou-Taconnat, S. Aubourg, C. Lurin, E. Delannoy, and M.-L. Martin-Magniette. (2013) HTSDiff: A Model-Based Clustering Alternative to Test-Based Methods in Differential Gene Expression Analyses by RNA-Seq Benchmarked on Real and Synthetic Datasets (submitted).

Examples

1
2
3
4
5
6
7
8
set.seed(12345)

#### Generate synthetic data: 2000 genes under H0
## syn <- syntheticData(H0number = 2000)

#### Calculate criteria for null model
## nulltest <- nullModelLogLike(syn, conds=c(1,1,2,2),
##	norm="DESeq")

HTSDiff documentation built on May 2, 2019, 6:47 p.m.