Description Usage Arguments Details Value Author(s) References Examples
View source: R/eigenvalueBased.R
Eigenvalue-based Descriptors
1 | eigenvalueBased(g, matrix_function, s=1)
|
g |
A graph as a graphNEL object. |
matrix_function |
The matrix function to calculate the desired matrix for the graph. For details see the vignette or the example section below. |
s |
Parameter to caluclate the descriptors, see reference. Default set to 1. |
For details see the Vignette.
It returns a list with following items:
HMs |
Formula (2) in the reference paper. |
SMstance |
Formula (3) in the reference paper. |
ISMs |
Formula (4) in the reference paper. |
PMs |
Formula (5) in the reference paper. |
IPMs |
Formula (6) in the reference paper. |
Lavanya Sivakumar, Laurin Mueller
Dehmer M, Sivakumar L, Varmuzua K: Uniquely Discriminating Molecular Structures Using Novel Eigenvalue Based Descriptors. match 2012, 67:147-172
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | library(RBGL)
set.seed(123)
g <- randomGraph(1:8, 1:5, 0.36, weights=FALSE)
mat.dist <- distanceMatrix(g)
##Matrices like in the paper
##1. adjacency matrix
eigenvalueBased(g,adjacencyMatrix,2)
##2. Laplacian matrix
eigenvalueBased(g,laplaceMatrix,2)
##3. Distance matrix
eigenvalueBased(g,distanceMatrix,2)
##4. Distance path Matrix
eigenvalueBased(g,distancePathMatrix,2)
##5. Augmented vertex degree matrix
eigenvalueBased(g,augmentedMatrix,2)
##6. Extended adjacency matrix
eigenvalueBased(g,extendedAdjacencyMatrix,2)
##7. Connectivity matrix
eigenvalueBased(g,vertConnectMatrix,2)
##8. Random Walk markov matrix
eigenvalueBased(g,randomWalkMatrix,2)
##9. Weighted structure function matrix IM1
eigenvalueBased(g,weightStrucFuncMatrix_lin,2)
##10. Weighted structure function matrix IM2
eigenvalueBased(g,weightStrucFuncMatrix_exp,2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.