Description Usage Arguments Details Value Author(s) Examples
View source: R/calculateDescriptors.R
The method calculates multiple descriptors for a list of graphs.
1 |
graphs |
either a list of or a single graphNEL object. |
... |
descriptors to calculate and arguments to pass, see ‘Details’. |
labels |
whether or not the columns of the resulting data frame should be named using the getLabels() method. |
log |
whether or not informative messages about the progress of the calculation should be printed |
calculateDescriptors() calls each function specified in ‘...’ for every graph in the given list and creates a data frame containing the calculated data. You can specify the functions either as strings (such as “totalAdjacency”) or using the numbers from the following table (e.g., 2001). For convenience, the multiples of 1000 denote entire groups of descriptors.
1000 | --- all of 1xxx |
1001 | wiener |
1002 | harary |
1003 | balabanJ |
1004 | meanDistanceDeviation |
1005 | compactness |
1006 | productOfRowSums |
1007 | hyperDistancePathIndex |
1008 | dobrynin |
2000 | --- all of 2xxx |
2001 | totalAdjacency |
2002 | zagreb1 |
2003 | zagreb2 |
2004 | modifiedZagreb |
2005 | augmentedZagreb |
2006 | variableZagreb |
2007 | randic |
2008 | complexityIndexB |
2009 | normalizedEdgeComplexity |
2010 | atomBondConnectivity |
2011 | geometricArithmetic1 |
2012 | geometricArithmetic2 |
2013 | geometricArithmetic3 |
2014 | narumiKatayama |
3000 | --- all of 3xxx |
3001 | topologicalInfoContent |
3002 | bonchev1 |
3003 | bonchev2 |
3004 | bertz |
3005 | radialCentric |
3006 | vertexDegree |
3007 | balabanlike1 |
3008 | balabanlike2 |
3009 | graphVertexComplexity |
3010 | informationBondIndex |
3011 | edgeEqualityMIC |
3012 | edgeMagnitudeMIC |
3013 | symmetryIndex |
3014 | bonchev3 |
3015 | graphDistanceComplexity |
3016 | distanceDegreeMIC |
3017 | distanceDegreeEquality |
3018 | distanceDegreeCompactness |
3019 | informationLayerIndex |
4000 | --- all of 4xxx |
4001 | mediumArticulation |
4002 | efficiency |
4003 | graphIndexComplexity |
4004 | offdiagonal |
4005 | spanningTreeSensitivity |
4006 | distanceDegreeCentric |
4007 | distanceCodeCentric |
5000 | --- all of 5xxx |
5001 | infoTheoreticGCM: vertcent, exp |
5002 | infoTheoreticGCM: vertcent, lin |
5003 | infoTheoreticGCM: sphere, exp |
5004 | infoTheoreticGCM: sphere, lin |
5005 | infoTheoreticGCM: pathlength, exp |
5006 | infoTheoreticGCM: pathlength, lin |
5007 | infoTheoreticGCM: degree, exp |
5008 | infoTheoreticGCM: degree, lin |
5009 | infoTheoreticLabeledV1: exp |
5010 | infoTheoreticLabeledV1: lin |
5011 | infoTheoreticLabeledV2 |
5012 | infoTheoreticLabeledE: exp |
5013 | infoTheoreticLabeledE: lin |
6000 | --- all of 6xxx |
6001 | eigenvalueBased: adjacencyMatrix, s=1 |
6002 | eigenvalueBased: adjacencyMatrix, s=2 |
6003 | eigenvalueBased: laplaceMatrix, s=1 |
6004 | eigenvalueBased: laplaceMatrix, s=2 |
6005 | eigenvalueBased: distanceMatrix, s=1 |
6006 | eigenvalueBased: distanceMatrix, s=2 |
6007 | eigenvalueBased: distancePathMatrix, s=1 |
6008 | eigenvalueBased: distancePathMatrix, s=2 |
6009 | eigenvalueBased: augmentedMatrix, s=1 |
6010 | eigenvalueBased: augmentedMatrix, s=2 |
6011 | eigenvalueBased: extendedAdjacencyMatrix, s=1 |
6012 | eigenvalueBased: extendedAdjacencyMatrix, s=2 |
6013 | eigenvalueBased: vertConnectMatrix, s=1 |
6014 | eigenvalueBased: vertConnectMatrix, s=2 |
6015 | eigenvalueBased: randomWalkMatrix, s=1 |
6016 | eigenvalueBased: randomWalkMatrix, s=2 |
6017 | eigenvalueBased: weightStrucFuncMatrix_lin, s=1 |
6018 | eigenvalueBased: weightStrucFuncMatrix_lin, s=2 |
6019 | eigenvalueBased: weightStrucFuncMatrix_exp, s=1 |
6020 | eigenvalueBased: weightStrucFuncMatrix_exp, s=2 |
6021 | energy |
6022 | laplacianEnergy |
6023 | estrada |
6024 | laplacianEstrada |
6025 | spectralRadius |
7000 | --- all of 7xxx |
7001 | oneEdgeDeletedSubgraphComplexity |
7002 | twoEdgesDeletedSubgraphComplexity |
7003 | globalClusteringCoeff |
8000 | --- all of 8xxx |
8001 | connectivityID |
8002 | minConnectivityID |
8003 | primeID |
8004 | bondOrderID |
8005 | balabanID |
8006 | minBalabanID |
8007 | weightedID |
8008 | huXuID |
The arguments to these functions, such as the distance matrix or the list of vertex degrees, will be automatically supplied and reused. After each function (or group of functions), regardless of whether it was referred to by name or by its assigned number, you may optionally pass extra arguments as a list, but note that this will not override the calculated arguments. If you wish to pass the same extra arguments to multiple functions, you can concatenate the latter to a vector.
When functions are given by name, an “@NAME” suffix can be used to give the column a different name in the output data frame. This is needed when you want to calculate a descriptor more than once with varying arguments.
If log is TRUE, a progress message is printed to the standard output connection for each graph in the list.
A data frame where rows and columns represent the input graphs and the desired descriptors, respectively. The rows will be named according to the graph list; the column names are the names of the called functions if labels is FALSE, otherwise the label expressions as returned by getLabels() (and found in the vignette).
Michael Schutte
1 2 3 4 5 6 7 8 9 10 11 12 13 | library(RBGL)
set.seed(123)
g <- randomGraph(1:8, 1:5, 0.36, weights=FALSE)
calculateDescriptors(g, 1000, 2002, 2003)
calculateDescriptors(g, "randic", "offdiagonal", 7000, labels=TRUE)
# these will give the same results (although named differently):
calculateDescriptors(g, c(6011, 6013), list(s=3))
calculateDescriptors(g,
"eigenvalueBased@ea", list(matrix_function="extendedAdjacencyMatrix", s=3),
"eigenvalueBased@vc", list(matrix_function="vertConnectMatrix", s=3))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.