Description Usage Arguments Details Value Author(s) References Examples
A confidence interval by inverting the harmonic mean chi-squared test based on study-specific estimates and standard errors.
1 2 | hMeanChiSqCI(thetahat, se, w=rep(1, length(thetahat)),
alternative="two.sided", level=0.95)
|
thetahat |
A vector of parameter estimates. |
se |
A vector of standard errors. |
w |
A vector of weights. |
alternative |
Either |
level |
The level of the confidence interval. Defaults to 0.95. |
If alternative
is "none"
, then the function may return a
set of (non-overlapping) confidence intervals. The output then is a vector
of length 2n where n is the number of confidence intervals.
The p-value from the harmonic mean chi-squared test
Leonhard Held
Held, L. (2020). The harmonic mean chi-squared test to substantiate scientific findings. Journal of the Royal Statistical Society: Series C (Applied Statistics), 69, 697-708. https://doi.org/10.1111/rssc.12410
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
## Example from Fisher (1999) as discussed in Held (2020)
pvalues <- c(0.0245, 0.1305, 0.00025, 0.2575, 0.128)
lower <- c(0.04, 0.21, 0.12, 0.07, 0.41)
upper <- c(1.14, 1.54, 0.60, 3.75, 1.27)
se <- ci2se(lower, upper, ratio=TRUE)
estimate <- ci2estimate(lower, upper, ratio=TRUE)
## two-sided
CI1 <- hMeanChiSqCI(thetahat=estimate, se=se, w=1/se^2, alternative="two.sided")
CI2 <- hMeanChiSqCI(thetahat=estimate, se=se, w=1/se^2, alternative="two.sided", level=0.99875)
## one-sided
CI1b <- hMeanChiSqCI(thetahat=estimate, se=se, w=1/se^2, alternative="less", level=0.975)
CI2b <- hMeanChiSqCI(thetahat=estimate, se=se, w=1/se^2, alternative="less", level=1-0.025^2)
## confidence intervals on hazard ratio scale
print(round(exp(CI1),2))
print(round(exp(CI2),2))
print(round(exp(CI1b),2))
print(round(exp(CI2b),2))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.