| GEVFamily | R Documentation | 
Generates an object of class "GEVFamily" which
represents a Generalized EV family.
GEVFamily(loc = 0, scale = 1, shape = 0.5, of.interest = c("scale", "shape"),
          p = NULL, N = NULL, trafo = NULL, start0Est = NULL, withPos = TRUE,
          secLevel = 0.7, withCentL2 = FALSE, withL2derivDistr  = FALSE,
          withMDE = FALSE, ..ignoreTrafo = FALSE, ..withWarningGEV = TRUE)
| loc | real: known/fixed threshold/location parameter | 
| scale | positive real: scale parameter | 
| shape | positive real: shape parameter | 
| of.interest |  character: which parameters, transformations are of interest. | 
| p | real or NULL: probability needed for quantile and expected shortfall | 
| N | real or NULL: expected frequency for expected loss | 
| trafo | matrix or NULL: transformation of the parameter | 
| start0Est |  startEstimator — if  | 
| withPos | logical of length 1: Is shape restricted to positive values? | 
| secLevel |  a numeric of length 1:
In the ideal GEV model, for each observastion  | 
| withCentL2 | logical: shall L2 derivative be centered by substracting
the E()? Defaults to  | 
| withL2derivDistr | logical: shall the distribution of the L2 derivative
be computed? Defaults to  | 
| withMDE | logical: should Minimum Distance Estimators be used to
find a good starting value for the parameter search?
Defaults to  | 
| ..ignoreTrafo | logical: only used internally in  | 
| ..withWarningGEV | logical: shall warnings be issued if shape is large? | 
The slots of the corresponding L2 differentiable parameteric family are filled.
Object of class "GEVFamily"
Matthias Kohl Matthias.Kohl@stamats.de
Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
Nataliya Horbenko nhorbenko@gmail.com
Kohl, M. (2005) Numerical Contributions to 
the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.
Kohl, M., Ruckdeschel, P., and Rieder, H. (2010):
Infinitesimally Robust Estimation in General Smoothly Parametrized Models.
Stat. Methods Appl., 19, 333-354.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10260-010-0133-0")}.
Ruckdeschel, P. and Horbenko, N. (2013): Optimally-Robust Estimators in Generalized
Pareto Models. Statistics. 47(4), 
762-791.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/02331888.2011.628022")}.
Ruckdeschel, P. and Horbenko, N. (2012): Yet another breakdown point notion:
EFSBP –illustrated at scale-shape models. Metrika, 75(8),
1025–1047. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s00184-011-0366-4")}.
L2ParamFamily-class, GPareto
(G1 <- GEVFamily())
FisherInfo(G1)
checkL2deriv(G1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.