| ismevgpdgevdiag-methods | R Documentation | 
We provide wrapper to the diagnostic plots
gpd.diag and gev.diag of package ismev,
as well as to profilers gpd.prof, gpd.profxi and gev.prof,
gev.profxi. 
gpd.diag(z,...)
## S4 method for signature 'gpd.fit'
gpd.diag(z)
## S4 method for signature 'GPDEstimate'
gpd.diag(z, npy = 365)
gev.diag(z)
## S4 method for signature 'gev.fit'
gev.diag(z)
## S4 method for signature 'GEVEstimate'
gev.diag(z)
gpd.prof(z,...)
## S4 method for signature 'gpd.fit'
gpd.prof(z, m, xlow, xup, npy = 365, conf = 0.95, nint = 100)
## S4 method for signature 'GPDEstimate'
gpd.prof(z, m, xlow, xup, npy = 365, conf = 0.95, nint = 100)
gev.prof(z,...)
## S4 method for signature 'gev.fit'
gev.prof(z, m, xlow, xup, conf = 0.95, nint = 100)
## S4 method for signature 'GEVEstimate'
gev.prof(z, m, xlow, xup, conf = 0.95, nint = 100)
gpd.profxi(z,...)
## S4 method for signature 'gpd.fit'
gpd.profxi(z,  xlow, xup, conf = 0.95, nint = 100)
## S4 method for signature 'GPDEstimate'
gpd.profxi(z,  xlow, xup, npy = 365, conf = 0.95, nint = 100)
gev.profxi(z,...)
## S4 method for signature 'gev.fit'
gev.profxi(z, xlow, xup, conf = 0.95, nint = 100)
## S4 method for signature 'GEVEstimate'
gev.profxi(z, xlow, xup, conf = 0.95, nint = 100)
z | 
 an argument of class   | 
m | 
 The return level (i.e.\ the profile likelihood is for the
value that is exceeded with probability   | 
... | 
 further parameters to be passed on the specific methods.  | 
xlow, xup | 
 The least and greatest value at which to evaluate the profile likelihood.  | 
npy | 
 The number of observations per year.  | 
conf | 
 The confidence coefficient of the plotted profile confidence interval.  | 
nint | 
 The number of points at which the profile likelihood is evaluated.  | 
We provide a coercing of our fits of S4-classes "GPDEstimate"
and "GEVEstimate" to the (S3-)classes gpd.fit and gev.fit
of package ismev (the latter being cast to an S4 class, internally, in
our package.
For gpd.fit, gev.fit
(quoted from package ismev:
For stationary models four plots are produced; a probability plot,
a quantile plot, a return level plot and a histogram of data with
fitted density.
For non-stationary models two plots are produced; a residual probability plot and a residual quantile plot.
For gpd.prof, gev.prof
(quoted from package ismev:
A plot of the profile likelihood is produced, with a horizontal
line representing a profile confidence interval with confidence
coefficient conf.
Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
ismev: An Introduction to Statistical Modeling of Extreme Values. R package version 1.39. https://CRAN.R-project.org/package=ismev; original S functions written by Janet E. Heffernan with R port and R documentation provided by Alec G. Stephenson. (2012).
Coles, S. (2001). An introduction to statistical modeling of extreme values. London: Springer.
if(require(ismev)){
  ## from ismev
  data(portpirie)
  data(rain)
  detach(package:ismev)
  ppfit <- ismev::gev.fit(portpirie[,2])
  gev.diag(ppfit)
  ##
  (mlE <- MLEstimator(portpirie[,2], GEVFamilyMuUnknown(withPos=FALSE)))
  gev.diag(mlE)
  ## not tested on CRAN because it takes some time...
  gev.prof(mlE, m = 10, 4.1, 5)
  gev.profxi(mlE, -0.3, 0.3)
  rnfit <- ismev::gpd.fit(rain,10)
  gpd.diag(rnfit)
  ##
  mlE2 <- MLEstimator(rain[rain>10], GParetoFamily(loc=10))
  gpd.diag(mlE2)
  gpd.prof(mlE2, m = 10, 55, 77)
  gpd.profxi(mlE2, -0.02, 0.02)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.