Description Usage Arguments Details Value Author(s) See Also Examples
This function computes confidence intervals for the estimated concentrations in a four-parameter logistic model fit to a set of dilution series in a reverse-phase protein array experiment.
1 2 3 4 | getConfidenceInterval(result,
alpha=0.1,
nSim=50,
progmethod=NULL)
|
result |
object of class |
alpha |
numeric scalar specifying desired significance of the confidence interval; the width of the resulting interval is 1 - alpha. |
nSim |
numeric scalar specifying number of times to resample the data in order to estimate the confidence intervals. |
progmethod |
optional function that can be used to report progress. |
In order to compute the confidence intervals, the function assumes
that the errors in the observed Y intensities are independent
normal values, with mean centered on the estimated curve and
standard deviation that varies smoothly as a function of the (log)
concentration. The smooth function is estimated using
loess.
The residuals are resampled from this estimate and the model is refit;
the confidence intervals are computed empirically as symmetrically
defined quantiles of the refit parameter sets.
An object of class RPPAFit, containing updated values for the
slots lower, upper, and conf.width that describe the
confidence interval.
Kevin R. Coombes kcoombes@mdanderson.org, P. Roebuck proebuck@mdanderson.org
1 2 3 4 5 6 7 8 9 10 11 12 13 | ## Not run:
extdata.dir <- system.file("extdata", package="SuperCurveSampleData")
txtdir <- file.path(extdata.dir, "rppaCellData")
akt <- RPPA("Akt.txt", path=txtdir)
design <- RPPADesign(akt,
grouping="blockSample",
controls=list("neg con", "pos con"))
fit.nls <- RPPAFit(akt, design, "Mean.Net")
## N.B.: this takes a while!
fit.nls <- getConfidenceInterval(fit.nls, alpha=0.10, nSim=50)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.