Description Usage Arguments Value Author(s) References See Also Examples
This functions allow to test for the number of axes in multivariate analysis. The
procedure testdim.pca
implements a method for principal component analysis on
correlation matrix. The procedure is based on the computation of the RV coefficient.
1 2 3 |
object |
an object corresponding to an analysis (e.g. duality diagram, an object of class |
nrepet |
the number of repetitions for the permutation procedure |
nbax |
the number of axes to be tested, by default all axes |
alpha |
the significance level |
... |
other arguments |
An object of the class krandtest
. It contains also:
nb |
The estimated number of axes to keep |
nb.cor |
The number of axes to keep estimated using a sequential Bonferroni procedure |
Stephane Dray stephane.dray@univ-lyon1.fr
Dray, S. (2007) On the number of principal components: A test of dimensionality based on measurements of similarity between matrices. Computational Statistics and Data Analysis, in press.
dudi.pca
, RV.rtest
,testdim.multiblock
1 2 3 4 5 6 7 8 9 10 11 12 |
class: krandtest lightkrandtest
Monte-Carlo tests
Call: testdim.pca(object = pca1)
Number of tests: 10
Adjustment method for multiple comparisons: none
Permutation number: 99
Test Obs Std.Obs Alter Pvalue
1 Axis 1 0.6517098 0.9757790 greater 0.20
2 Axis 2 0.6538891 0.7112931 greater 0.24
3 Axis 3 0.6839662 0.8102534 greater 0.22
4 Axis 4 0.6170342 -0.8950455 greater 0.80
5 Axis 5 0.6683859 0.8973686 greater 0.16
6 Axis 6 0.7687320 2.5089913 greater 0.02
7 Axis 7 0.6227411 -0.3868539 greater 0.63
8 Axis 8 0.6365599 0.1336160 greater 0.44
9 Axis 9 0.7778513 1.9523465 greater 0.04
10 Axis 10 1.0000000 5.2971957 greater 0.01
[1] 0
[1] 0
class: krandtest lightkrandtest
Monte-Carlo tests
Call: testdim.pca(object = pca2)
Number of tests: 11
Adjustment method for multiple comparisons: none
Permutation number: 99
Test Obs Std.Obs Alter Pvalue
1 Axis 1 0.9276029 10.2622174 greater 0.01
2 Axis 2 0.8765561 5.4896145 greater 0.01
3 Axis 3 0.8195407 -0.9536363 greater 0.88
4 Axis 4 0.7130800 0.7479615 greater 0.23
5 Axis 5 0.7621707 1.9229507 greater 0.05
6 Axis 6 0.7781209 2.1174858 greater 0.05
7 Axis 7 0.8316557 4.7042069 greater 0.01
8 Axis 8 0.9641126 5.4685423 greater 0.01
9 Axis 9 0.7978495 1.0466351 greater 0.17
10 Axis 10 0.9701563 6.6916268 greater 0.01
11 Axis 11 1.0000000 9.2356324 greater 0.01
[1] 2
[1] 2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.