Description Usage Format Source References Examples
This data set gives 3 matrices about geographical, genetic and anthropometric distances.
1  | 
yanomama is a list of 3 components:
is a matrix of 19-19 geographical distances
is a matrix of 19-19 SFA (genetic) distances
is a matrix of 19-19 anthropometric distances
Spielman, R.S. (1973) Differences among Yanomama Indian villages: do the patterns of allele frequencies, anthropometrics and map locations correspond? American Journal of Physical Anthropology, 39, 461–480.
Table 7.2 Distance matrices for 19 villages of Yanomama Indians. All distances are as given by Spielman (1973), multiplied by 100 for convenience in: Manly, B.F.J. (1991) Randomization and Monte Carlo methods in biology Chapman and Hall, London, 1–281.
1 2 3 4 5 6 7 8 9 10 11  |     data(yanomama)
    gen <- quasieuclid(as.dist(yanomama$gen)) # depends of mva
    ant <- quasieuclid(as.dist(yanomama$ant)) # depends of mva
    par(mfrow = c(2,2))
    plot(gen, ant)
    t1 <- mantel.randtest(gen, ant, 99);
    plot(t1, main = "gen-ant-mantel") ; print(t1)
    t1 <- procuste.rtest(pcoscaled(gen), pcoscaled(ant), 99)
    plot(t1, main = "gen-ant-procuste") ; print(t1)
    t1 <- RV.rtest(pcoscaled(gen), pcoscaled(ant), 99)
    plot(t1, main = "gen-ant-RV") ; print(t1)
 | 
Monte-Carlo test
Call: mantel.randtest(m1 = gen, m2 = ant, nrepet = 99)
Observation: 0.2999879 
Based on 99 replicates
Simulated p-value: 0.06 
Alternative hypothesis: greater 
    Std.Obs Expectation    Variance 
 1.70148005  0.01276251  0.02849653 
Monte-Carlo test
Call: procuste.rtest(df1 = pcoscaled(gen), df2 = pcoscaled(ant), nrepet = 99)
Observation: 0.6819023 
Based on 99 replicates
Simulated p-value: 0.01 
Alternative hypothesis: greater 
    Std.Obs Expectation    Variance 
2.668382474 0.547180243 0.002549068 
Monte-Carlo test
Call: RV.rtest(df1 = pcoscaled(gen), df2 = pcoscaled(ant), nrepet = 99)
Observation: 0.4272698 
Based on 99 replicates
Simulated p-value: 0.03 
Alternative hypothesis: greater 
    Std.Obs Expectation    Variance 
2.814767920 0.252892947 0.003837889 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.