Description Usage Arguments Details Value Author(s) Source References See Also Examples
Global optimization procedure using a covariance matrix adapting evolutionary strategy.
1 |
par |
Initial values for the parameters to be optimized over. |
fn |
A function to be minimized (or maximized), with first argument the vector of parameters over which minimization is to take place. It should return a scalar result. |
... |
Further arguments to be passed to |
lower, upper |
Bounds on the variables. |
control |
A list of control parameters. See ‘Details’. |
Note that arguments after ... must be matched exactly.
By default this function performs minimization, but it will maximize
if control$fnscale is negative. It tries to be a drop in
replacement for optim.
The control argument is a list that can supply any of the
following components:
fnscaleAn overall scaling to be applied to the value
of fn during optimization. If negative,
turns the problem into a maximization problem. Optimization is
performed on fn(par)/fnscale.
maxitThe maximum number of iterations. Defaults to
100*D^2, where D is the dimension of the parameter space.
stopfitnessStop if function value is smaller than or
equal to stopfitness. This is the only way for the CMA-ES
to "converge".
sigmaInital variance estimates. Can be a single
number or a vector of length D, where D is the dimension
of the parameter space.
weightsRecombination weights
dampsDamping for step-size
csCumulation constant for step-size
ccumCumulation constant for covariance matrix
|ccov.1Learning rate for rank-one update
\itemccov.muLearning rate for rank-mu update
A list with components:
par |
The best set of parameters found. |
value |
The value of |
counts |
A two-element integer vector giving the number of calls
to |
convergence |
An integer code.
|
message |
Always set to |
Olaf Mersmann olafm@statistik.tu-dortmund.de
The code is based on the ‘purecmaes.m’ by N. Hansen.
Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, I. Inza and E. Bengoetxea (eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102, Springer;
See Also optim for traditional optimization methods.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ## Compare performance of different algorithms on the shifted Rosenbrock function:
## Test dimension
n <- 10
## Random optimum in [-50, 50]^n
opt <- runif(n, -50, 50)
bias <- 0
f <- genShiftedRosenbrock(opt, bias)
## Inital parameter values
start <- runif(n, -100, 100)
res.nm <- optim(start, f, method="Nelder-Mead")
res.gd <- optim(start, f, method="BFGS")
res.cg <- optim(start, f, method="CG")
res.sa <- optim(start, f, method="SANN")
res.es <- cma.es(start, f)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.