nbreg.control | R Documentation |
Various parameters that control fitting of negative binomial regression models
using nbreg
.
nbreg.control(method = "BFGS", maxit = 10000, start = NULL, hessian = TRUE,
dot = "separate", ...)
method |
characters string specifying the |
maxit |
integer specifying the |
start |
an optional list with elements |
hessian |
logical. Should the numerically approximated Hessian be computed
to derive an estimate of the variance-covariance matrix? If |
dot |
character. Controls how two-part |
... |
arguments passed to |
All parameters in nbreg
are estimated by maximum likelihood
using optim
with control options set in nbreg.control
.
Most arguments are passed on directly to optim
and start
controls
the choice of starting values for calling optim
.
Starting values can be supplied or are estimated by a Poisson regression in
glm.fit
(the default, starting values of coefficients in \theta
are set to zero to ensure compatibility with NB1). Standard errors are derived
using the analytical Hessian matrix or by numerical approximation of the Hessian.
A list with the arguments specified.
nbreg
data("CrabSatellites", package = "countreg")
## default start values
fm1 <- nbreg(satellites ~ width + as.numeric(color), data = CrabSatellites)
## user-supplied start values
fm2 <- nbreg(satellites ~ width + as.numeric(color), data = CrabSatellites,
start = list(mu = c(0, 0, 0), theta = c(0.5)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.