Description Usage Format Source References Examples
The l1 clustering algorithm from the clusterpath package was applied to the iris dataset and the breakpoints in the solution path are stored in this data frame.
1 |
A data frame with 9643 observations on the following 8 variables.
rowa numeric vector: row of the original iris data matrix
Speciesa factor with levels setosa
versicolor virginica: Species from corresponding row
alphaa numeric vector: the value of the optimal solution.
lambdaa numeric vector: the regularization parameter (ie point in the path).
cola factor with levels Sepal.Length
Sepal.Width Petal.Length Petal.Width: column
from the original iris data.
gammaa factor with levels 0: parameter from clustering.
norma factor with levels 1 parameter from clustering.
solvera factor with levels path algorithm used for
clustering.
clusterpath package
clusterpath article
1 2 3 4 5 6 7 8 | data(iris.l1.cluster,package="directlabels")
iris.l1.cluster$y <- iris.l1.cluster$alpha
library(ggplot2)
p <- ggplot(iris.l1.cluster,aes(lambda,y,group=row,colour=Species))+
geom_line(alpha=1/4)+
facet_grid(col~.)
p2 <- p+xlim(-0.0025,max(iris.l1.cluster$lambda))
print(direct.label(p2,list(first.points,get.means)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.