Clustering of the iris data with the l1 clusterpath

Share:

Description

The l1 clustering algorithm from the clusterpath package was applied to the iris dataset and the breakpoints in the solution path are stored in this data frame.

Usage

1

Format

A data frame with 9643 observations on the following 8 variables.

row

a numeric vector: row of the original iris data matrix

Species

a factor with levels setosa versicolor virginica: Species from corresponding row

alpha

a numeric vector: the value of the optimal solution.

lambda

a numeric vector: the regularization parameter (ie point in the path).

col

a factor with levels Sepal.Length Sepal.Width Petal.Length Petal.Width: column from the original iris data.

gamma

a factor with levels 0: parameter from clustering.

norm

a factor with levels 1 parameter from clustering.

solver

a factor with levels path algorithm used for clustering.

Source

clusterpath package

References

clusterpath article

Examples

1
2
3
4
5
6
7
8
data(iris.l1.cluster,package="directlabels")
iris.l1.cluster$y <- iris.l1.cluster$alpha
library(ggplot2)
p <- ggplot(iris.l1.cluster,aes(lambda,y,group=row,colour=Species))+
  geom_line(alpha=1/4)+
  facet_grid(col~.)
p2 <- p+xlim(-0.0025,max(iris.l1.cluster$lambda))
print(direct.label(p2,list(first.points,get.means)))

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.