Description Usage Arguments Details Value Note Author(s) See Also Examples
rvg4yx generates random variates of a response
variable under the given conditions of mean and
variance-covariance structure of matrices of predictors
and their coefficients.
1 2 3 |
N |
a number of random variates |
pars |
a vector of regression parameters |
ztrunc |
FALSE by default |
xreg |
FALSE by default |
seed |
NULL a random seed |
shape |
a shape parameter of gamma distribution |
... |
other arguments |
kind |
types of random variates |
center.X |
Are predictors centered at their means? |
The mean parameter of a response variable is a function of linear predictor by a link function in the context of generalized linear models.
Log and logit links are supported.
Default to Xstr is an independent multivariate
normal distribution with mean Xmean, correlation
R, and standard deviation Xsd.
a list with components
n |
the number of observations which are actually realized |
y |
the
|
X |
the |
yX |
the |
Default to a matrix decomposition method is
eigen. Other options are chol and
svd.
Currently, the link logit is not supported.
Chel Hee Lee <gnustats@gmail.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Not run:
tmp <- rvg4yx(N=5e2, pars=c(0.5, -0.5), ztrunc=TRUE, xreg=TRUE, kind="mvnorm", mean=xm, sigma=xsigma, center.X=TRUE)
dat <- tmp$yX
table(dat$y)
## End(Not run)
# y <- dat$y
# print(c(mean(y), dat$cm1))
# print(c(var(y), dat$cm2, dat$cm22))
# print(c(skewness(y), dat$g1))
# dat1 <- rvg4yx(N=1e1, xreg=FALSE, pars=2, ztrunc=TRUE, shape=4)
# y1 <- dat1$y
# print(c(mean(y1), dat1$cm1))
# print(c(var(y1), dat1$cm2, dat1$cm22, dat1$cm23))
# print(c(skewness(y1), dat1$g1))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.