summary.maxim: Summary method for maximization

Description Usage Arguments Value Author(s) See Also Examples

View source: R/summary.maxim.R

Description

Summarizes the maximization results

Usage

1
2
3
4
5
6
7
## S3 method for class 'maxim'
summary( object, hessian=FALSE, unsucc.step=FALSE, ... )
## S3 method for class 'summary.maxim'
print(x,
                              max.rows=getOption("max.rows", 20),
                              max.cols=getOption("max.cols", 7),
                              ... )

Arguments

object

optimization result, object of class maxim. See maxNR.

hessian

logical, whether to display Hessian matrix.

unsucc.step

logical, whether to describe last unsuccesful step if code == 3

x

object of class summary.maxim, summary of maximization result.

max.rows

maximum number of rows to be printed. This applies to the resulting coefficients (as those are printed as a matrix where the other column is the gradient), and to the Hessian if requested.

max.cols

maximum number of columns to be printed. Only Hessian output, if requested, uses this argument.

...

currently not used.

Value

Object of class summary.maxim, intended to print with corresponding print method. There are following components:

type

type of maximization.

iterations

number of iterations.

code

exit code (see returnCode.)

message

a brief message, explaining the outcome (see returnMessage).

unsucc.step

description of last unsuccessful step, only if requested and code == 3

maximum

function value at maximum

estimate

matrix with following columns:

results

coefficient estimates at maximum

gradient

estimated gradient at maximum

constraints

information about the constrained optimization. NULL if unconstrained maximization.

hessian

estimated hessian at maximum (if requested)

Author(s)

Ott Toomet

See Also

maxNR, returnCode, returnMessage

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
## minimize a 2D quadratic function:
f <- function(b) {
  x <- b[1]; y <- b[2];
  val <- (x - 2)^2 + (y - 3)^2
  attr(val, "gradient") <- c(2*x - 4, 2*y - 6)
  attr(val, "hessian") <- matrix(c(2, 0, 0, 2), 2, 2)
  val
}
## Note that NR finds the minimum of a quadratic function with a single
## iteration.  Use c(0,0) as initial value.  
result1 <- maxNR( f, start = c(0,0) ) 
summary( result1 )
## Now use c(1000000, -777777) as initial value and ask for hessian
result2 <- maxNR( f, start = c( 1000000, -777777)) 
summary( result2 )

Example output

Loading required package: miscTools

Please cite the 'maxLik' package as:
Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1.

If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site:
https://r-forge.r-project.org/projects/maxlik/
--------------------------------------------
Newton-Raphson maximisation 
Number of iterations: 25 
Return code: 5 
Infinite value 
Function value: Inf 
Estimates:
           estimate       gradient
[1,] -7.034857e+155 -1.406971e+156
[2,] -1.055228e+156 -2.110457e+156
--------------------------------------------
--------------------------------------------
Newton-Raphson maximisation 
Number of iterations: 24 
Return code: 5 
Infinite value 
Function value: Inf 
Estimates:
           estimate       gradient
[1,]  2.110451e+155  4.220903e+155
[2,] -1.641470e+155 -3.282940e+155
--------------------------------------------

maxLik documentation built on Nov. 25, 2020, 3 a.m.