Nothing
#' Box's test for equivalence of covariance matrices
#'
#' @description The function performs Box's test for testing the null hypothesis that two or more covariance matrices are equal.
#' @param X A data frame with the values of numberical variables.
#' @param cl An normial or ordinal variable which defines groups (a partition) (must be of type \code{factor}).
#' @param alpha Significance level (default \code{0.05}).
#' @param test Wheter the F-test (\code{test = "F"}) or Chi-square (\code{test = "ChiSq"}) test should be forced (see Details). In the case of default value \code{any}, the test is chosen based on the number of units by groups.
#' @return A list with the following elements:
#' \itemize{
#' \item \code{MBox} - The value of the Box's M statistic.
#' \item \code{ChiSq} or \code{F} - The approximation statistic test.
#' \item \code{p} - An observed significance level.
#' }
#' @details If the size of any group is at least 20 units (sufficiently large),
#' the test takes a Chi-square approximation, otherwise it takes
#' an F approximation.
#' @examples
#' BoxMTest(X = mtcars[, c(1, 3, 4, 5)], cl = as.factor(mtcars[, 2]), alpha = 0.05)
#' @author
#' Andy Liaw and Aleš Žiberna (minor modifications)
#' @references Stevens, J. (1996). Applied multivariate statistics for the social sciences . 1992. Hillsdale, NJ: Laurence Erlbaum.
#' @export
BoxMTest <- function(X, cl, alpha=0.05, test="any") {
if (alpha <= 0 || alpha >= 1)
stop('significance level must be between 0 and 1')
g = nlevels(cl) ## Number of groups.
n = table(cl) ## Vector of groups-size.
N = nrow(X)
p = ncol(X)
bandera = 2
if (any(n >= 20)) bandera = 1
if(test=="F") bandera=2
if(test=="ChiSq") bandera=1
## Partition of the group covariance matrices.
#covList <- tapply(as.matrix(X), rep(cl, ncol(X)), function(x, nc) cov(matrix(x, nc = nc)), ncol(X))
covList <- by(X, INDICES = cl, FUN = stats::cov)
deno = sum(n) - g
suma = array(0, dim=dim(covList[[1]]))
for (k in 1:g)
suma = suma + (n[k] - 1) * covList[[k]]
Sp = suma / deno ## Pooled covariance matrix.
Falta=0
for (k in 1:g){
Falta = Falta + ((n[k] - 1) * log(det(covList[[k]]))) #; print(log(det(covList[[k]])))
}
MB = (sum(n) - g) * log(det(Sp)) - Falta ## Box's M statistic.
#print(log(det(Sp)))
suma1 = sum(1 / (n[1:g] - 1))
suma2 = sum(1 / ((n[1:g] - 1)^2))
C = (((2 * p^2) + (3 * p) - 1) / (6 * (p + 1) * (g - 1))) *
(suma1 - (1 / deno)) ## Computing of correction factor.
if (bandera == 1)
{
X2 = MB * (1 - C) ## Chi-square approximation.
v = as.integer((p * (p + 1) * (g - 1)) / 2) ## Degrees of freedom.
## Significance value associated to the observed Chi-square statistic.
P = stats::pchisq(X2, v, lower=FALSE) #RM: corrected to be the upper tail
cat('------------------------------------------------\n');
cat(sprintf("%10s%11s%12s%13s\n", "MBox", "Chi-sqr", "df", "P"))
cat('------------------------------------------------\n')
cat(sprintf("%10.4f%11.4f%12.i%13.4f\n", MB, X2, v, P))
cat('------------------------------------------------\n')
if (P >= alpha) {
cat('Covariance matrices are not significantly different.\n')
} else {
cat('Covariance matrices are significantly different.\n')
}
invisible(list(MBox=MB, ChiSq=X2, df=v, pValue=P))
}
else
{
## To obtain the F approximation we first define Co, which combined to
## the before C value are used to estimate the denominator degrees of
## freedom (v2); resulting two possible cases.
Co = (((p-1) * (p+2)) / (6 * (g-1))) * (suma2 - (1 / (deno^2)))
if (Co - (C^2) >= 0) {
v1 = as.integer((p * (p + 1) * (g - 1)) / 2) ## Numerator DF.
#v21 = as.integer(trunc((v1 + 2) / (Co - (C^2)))) ## Denominator DF.
v21 = (((v1 + 2) / (Co - (C^2)))) ## Denominator DF.
F1 = MB * ((1 - C - (v1 / v21)) / v1) ## F approximation.
## Significance value associated to the observed F statistic.
P1 = stats::pf(F1, v1, v21, lower=FALSE)
cat('\n------------------------------------------------------------\n')
cat(sprintf("%10s%11s%11s%14s%13s\n", "MBox", "F", "df1", "df2", "p"))
cat('------------------------------------------------------------\n')
cat(sprintf("%10.4f%11.4f%11.i%14.3f%13.4f\n", MB, F1, v1, v21, P1))
cat('------------------------------------------------------------\n')
if (P1 >= alpha) {
cat('Covariance matrices are not significantly different.\n')
} else {
cat('Covariance matrices are significantly different.\n')
}
invisible(list(MBox=MB, F=F1, df1=v1, df2=v21, pValue=P1))
} else {
v1 = as.integer((p * (p + 1) * (g - 1)) / 2) ## Numerator df.
#v22 = as.integer(trunc((v1 + 2) / ((C^2) - Co))) ## Denominator df.
v22 = (((v1 + 2) / ((C^2) - Co))) ## Denominator df.
b = v22 / (1 - C - (2 / v22))
F2 = (v22 * MB) / (v1 * (b - MB)) ## F approximation.
## Significance value associated to the observed F statistic.
P2 = stats::pf(F2, v1, v22, lower=FALSE)
cat('\n------------------------------------------------------------\n')
cat(sprintf("%10s%11s%11s%14s%13s\n", "MBox", "F", "df1", "df2", "p"))
cat('------------------------------------------------------------\n')
cat(sprintf('%10.4f%11.4f%11.i%14.3f%13.4f\n', MB, F2, v1, v22, P2))
cat('------------------------------------------------------------\n')
if (P2 >= alpha) {
cat('Covariance matrices are not significantly different.\n')
} else {
cat('Covariance matrices are significantly different.\n')
}
invisible(list(MBox=MB, F=F2, df1=v1, df2=v22, pValue=P2))
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.