Description Usage Arguments Value Author(s) References Examples
The Storey-Taylor-Siegmund procedure for estimating pi0 is applied to pValues. The formula is equivalent to that in Schweder and Spjotvoll (1982), page 497, except the additional '+1' in the nominator that introduces a conservative bias which is proven to be sufficiently large for FDR control in finite families of hypotheses if the estimation is used for adjusting the nominal level of a linear step-up test.
1 | storey_pi0_est(pValues, lambda)
|
pValues |
The raw p-values for the marginal test problems |
lambda |
A tuning parameter in the interval (0, 1) |
A list containing:
pi0 |
A numeric number containing the estimated value of pi0 |
lambda |
A numeric number containing the tuning parameter for the estimation |
MarselScheer
Schweder, T. and Spjotvoll, E. (1982). Plots of P-values to evaluate many tests simultaneously. Biometrika 69, 3, 493-502.
Storey, J. D., Taylor, J. E. and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. JRSS B 66, 1, 187-205.
1 2 | my.pvals <- c(runif(50), runif(50, 0, 0.01))
result <- storey_pi0_est(my.pvals, 0.5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.