Description Usage Arguments Details Value Note Author(s) References See Also Examples
The functions use Gaussian basis functions to estimate the noncentrality parameters (ncp) from a large number of t-statistics.
| 1 2 3 4 5 6 | 
| tstat | Numeric vector of noncentrality parameters | 
| df | Numeric vector of degrees of freedom | 
| penalty |  An integer scalar among 1 through 5, indicating the order of derivatives of the estimated density funciton of ncp. The integral of square of such derivatives is the penalty to the log likelihood function. A character value among  | 
| lambdas | Numeric vector of smoothness tuning parameter  | 
| starts |  Optional numeric vector of starting values. If missing,  | 
| IC | Character; one of  | 
| K | The number of basis Gaussian density functions. | 
| bounds | A numeric vector of length 2, giving the approximate bounds where most of the probability of ncp lies. | 
| solver | Character. The name of the function for solving quadratic programming problems. Note that  | 
| plotit | logical; indicating if  | 
| verbose | logical; if  | 
| approx.hess | either logical or a number between 0 and 1. This helps in reducing time in evaluating the hessian matrix. If it is set to  | 
| ... | other paramters passed to  | 
nparncpt is a wrapper for nparncpt.sqp, the latter of which uses a sequential quadratic programming algorithm to find the mixing proportions
of the basis Gaussian density functions.
 A list with class attribute c("nparncpt", "ncpest")
| pi0 | estimated proportion of true nulls | 
| mu.ncp | mean of ncp | 
| sd.ncp | SD of ncp | 
| logLik | an object of class  | 
| enp | estimated ENP | 
| par | estimated parameters  | 
| lambda | the lambda that minimizes NIC | 
| gradiant | analytic gradiant at the estimate | 
| hessian | analytic hessian at the estimate | 
| beta | estimated mixing proportions for the NCP distribution | 
| IC | the information criterion specified by the user | 
| all.mus | mean of each basis Gaussian density | 
| all.sigs | SD of each basis Gaussian density | 
| data | a list of  | 
| i.final | the index of  | 
| all.pi0s | estimated pi0 for each lambda | 
| all.enps | ENP for each lambda | 
| all.thetas | parameter estimates for each lambda | 
| all.nics | Network information criterion (NIC) for each lambda | 
| all.nic.sd | SD of NIC for each lambda | 
| all.lambdas | the  | 
| nobs | the number of test statistics | 
df could be Inf for z-tests.  When this is the case, approximation is ignored. 
Long Qu
Qu L, Nettleton D, Dekkers JCM. (2012) Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of $t$-statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis. Biometrics, 68, 1178–1187.
parncpt, sparncpt, 
fitted.nparncpt, plot.nparncpt, summary.nparncpt,
coef.ncpest, logLik.ncpest, vcov.ncpest,
AIC, dncp
| 1 2 3 4 5 6 7 8 | ## Not run: 
data(simulatedTstat)
(npfit=nparncpt(tstat=simulatedTstat, df=8)); 
(pfit=parncpt(tstat=simulatedTstat, df=8, zeromean=FALSE)); plot(pfit)
(pfit0=parncpt(tstat=simulatedTstat, df=8, zeromean=TRUE)); plot(pfit0)
(spfit=sparncpt(npfit,pfit)); plot(spfit)
## End(Not run)
 | 
pi0= 0.7483634
mu.ncp= -0.02254265
sd.ncp= 1.523897
enp= 2.408478
lambda= 100
Warning message:
In nparncpt.sqp(tstat, df, ...) :
  Less than half of the estimated coefficients (betas) are less than 0.01. Your might want to try enlarging the `bounds` argument.
pi0 (proportion of null hypotheses) = 0.7483103
mu.ncp (mean of noncentrality parameters) = -0.03791745
sd.ncp (SD of noncentrality parameters) = 1.624555
pi0 (proportion of null hypotheses) = 0.7486391
mu.ncp (mean of noncentrality parameters) = 0
sd.ncp (SD of noncentrality parameters) = 1.626181
pi0= 0.7483134
mu.ncp= -0.03704109
sd.ncp= 1.534416
rho= 0.943
enp= 3.966283
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.