carolina2: Analysis of North Carolina design II

Description Usage Arguments Value Author(s) References Examples

Description

The function performs analysis of North Carolina II design (Comstock and Rosbinson 1952).

Usage

1
carolina2(dataframe, set, male, female, replication, yvar)

Arguments

dataframe

Dataframe with the variablesevariables set, male, female, replication and other response variables

set

Name of column with set variables

male

Name of column with male parent information

female

Name of column with female parent information

replication

Name of column with replication column

yvar

Name of response variable to be used for the analysis

Value

The following values as list are returned

model

model - use anova (model) to see analysis of variables

var.m

Male variance

var.f

Female variance

var.mf

Male*Female variance

var.AM

Additive male variance

var.Af

Additive female variance

var.D

Dominance variance

Author(s)

Umesh Rosyara

References

Comstock R.F., Rosbinson F.F (1952). Estimation of average dominance of genes. In Heterosis, Iowa State College Press, Iowa City, Iowa, chapter 30.

Singh R.K., Chaudhary B.D.(1985) Biometrical Methods in Quantitative Genetics Analysis, Kalyani Publishers.

Mather K., Jinks J.L. (1971). Biometrical Genetics. Chapman & Hall, London.

Saxton A. (2004) Genetic Analysis of Complex Traits Using SAS. SAS Institute, Inc.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
 data(northcaro2)
 # for trait yield 
myo <- carolina2(dataframe = northcaro2, set = "set", male = "male", female = "female",
 replication = "rep", yvar = "yield")
anova(myo$model) # anova 
myo$var.m
myo$var.f
myo$var.mf
myo$var.Af
myo$var.D

# for trait tuber  
tum <- carolina2(dataframe = northcaro2, set = "set", male = "male", female = "female", 
replication = "rep", yvar = "tuber")
anova(tum$model) 
anova(tum$model) # anova 
tum$var.m
tum$var.f
tum$var.mf
tum$var.Af
tum$var.D

plantbreeding documentation built on May 2, 2019, 4:54 p.m.