Description Usage Arguments Details Value Author(s) References See Also Examples
Nonparametric robust covariance matrix estimators a la Driscoll and Kraay for panel models with cross-sectional and serial correlation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | vcovSCC(x, ...)
## S3 method for class 'plm'
vcovSCC(
x,
type = c("HC0", "sss", "HC1", "HC2", "HC3", "HC4"),
cluster = "time",
maxlag = NULL,
inner = c("cluster", "white", "diagavg"),
wj = function(j, maxlag) 1 - j/(maxlag + 1),
...
)
## S3 method for class 'pcce'
vcovSCC(
x,
type = c("HC0", "sss", "HC1", "HC2", "HC3", "HC4"),
cluster = "time",
maxlag = NULL,
inner = c("cluster", "white", "diagavg"),
wj = function(j, maxlag) 1 - j/(maxlag + 1),
...
)
|
x |
an object of class |
... |
further arguments |
type |
the weighting scheme used, one of |
cluster |
switch for vcovG; set at |
maxlag |
either |
inner |
the function to be applied to the residuals inside the
sandwich: |
wj |
weighting function to be applied to lagged terms, |
vcovSCC is a function for estimating a robust covariance matrix
of parameters for a panel model according to the
\insertCiteDRIS:KRAA:98;textualplm method, which is consistent
with cross–sectional and serial correlation in a T-asymptotic
setting and irrespective of the N dimension. The use with random
effects models is undocumented.
Weighting schemes specified by type are analogous to those in
sandwich::vcovHC() in package sandwich and are
justified theoretically (although in the context of the standard
linear model) by \insertCiteMACK:WHIT:85;textualplm and
\insertCiteCRIB:04;textualplm \insertCite@see @ZEIL:04plm).
The main use of vcovSCC (and the other variance-covariance estimators
provided in the package vcovHC, vcovBK, vcovNW, vcovDC) is to pass
it to plm's own functions like summary, pwaldtest, and phtest or
together with testing functions from the lmtest and car packages. All of
these typically allow passing the vcov or vcov. parameter either as a
matrix or as a function, e.g., for Wald–type testing: argument vcov. to
coeftest(), argument vcov to waldtest() and other methods in the
lmtest package; and argument vcov. to
linearHypothesis() in the car package (see the
examples), see \insertCite@ZEIL:04, 4.1-2 and examples belowplm.
An object of class "matrix" containing the estimate of
the covariance matrix of coefficients.
Giovanni Millo, partially ported from Daniel Hoechle's (2007) Stata code
CRIB:04plm
\insertRefDRIS:KRAA:98plm
\insertRefHOEC:07plm
\insertRefMACK:WHIT:85plm
\insertRefZEIL:04plm
sandwich::vcovHC() from the sandwich
package for weighting schemes (type argument).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | data("Produc", package="plm")
zz <- plm(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp, data=Produc, model="pooling")
## as function input to plm's summary method (with and without additional arguments):
summary(zz, vcov = vcovSCC)
summary(zz, vcov = function(x) vcovSCC(x, method="arellano", type="HC1"))
## standard coefficient significance test
library(lmtest)
coeftest(zz)
## SCC robust significance test, default
coeftest(zz, vcov.=vcovSCC)
## idem with parameters, pass vcov as a function argument
coeftest(zz, vcov.=function(x) vcovSCC(x, type="HC1", maxlag=4))
## joint restriction test
waldtest(zz, update(zz, .~.-log(emp)-unemp), vcov=vcovSCC)
## Not run:
## test of hyp.: 2*log(pc)=log(emp)
library(car)
linearHypothesis(zz, "2*log(pc)=log(emp)", vcov.=vcovSCC)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.