inst/removed/test_model.matrix_pmodel.response_NA.R

## Tests for correct construction in case of NAs of model.matrix[.pFormula|.plm] and pmodel.response.[pFormula|.plm]

# see, if NA dropping in construction of model.matrix and pmodel.response is done correctly.
# Some special NA patterns were not handeled correctly pre rev. 192 if pmodel.repsonse or model.matrix were called directly

# 1) model.matrix[.pFormula|.plm] 
# 2) pmodel.response.[pFormula|.plm]


library(plm)
data("Grunfeld", package="plm")
form <- formula(inv ~ value + capital)
plm_pool       <- plm(form, data=Grunfeld, model="pooling")
plm_fe         <- plm(form, data=Grunfeld, model="within")
plm_fe_tw      <- plm(form, data=Grunfeld, model="within", effect = "twoways")
plm_re         <- plm(form, data=Grunfeld, model="random")
plm_re_time    <- plm(form, data=Grunfeld, model="random", effect = "time")
plm_re_nerlove <- plm(form, data=Grunfeld, model="random", random.method = "nerlove")

plm_pool_pFormula       <- plm(pFormula(form), data=Grunfeld, model="pooling")
plm_fe_pFormula         <- plm(pFormula(form), data=Grunfeld, model="within")
plm_fe_tw_pFormula      <- plm(pFormula(form), data=Grunfeld, model="within", effect = "twoways")
plm_re_pFormula         <- plm(pFormula(form), data=Grunfeld, model="random")
plm_re_time_pFormula    <- plm(pFormula(form), data=Grunfeld, model="random", effect = "time")
plm_re_nerlove_pFormula <- plm(pFormula(form), data=Grunfeld, model="random", random.method = "nerlove")

# create Grunfeld pdata.frame
pGrunfeld <- pdata.frame(Grunfeld, index = c("firm", "year"))

# generate dataset with NA in dependent variable
Grunfeld_NA_dep_var <- Grunfeld
Grunfeld_NA_dep_var[1, ]$inv <- NA
pGrunfeld_NA_dep_var <- pdata.frame(Grunfeld_NA_dep_var)

Grunfeld_NA_indep_var <- Grunfeld
Grunfeld_NA_indep_var[1, ]$value <- NA
pGrunfeld_NA_indep_var <- pdata.frame(Grunfeld_NA_indep_var)

# generate dataset with NA row
Grunfeld_NA_row <- Grunfeld
Grunfeld_NA_row[1, c("inv", "value", "capital")] <- NA
pGrunfeld_NA_row <- pdata.frame(Grunfeld_NA_row)

# pdim on pdata.frame and plm object
pdim(pGrunfeld_NA_row) # balanced - ok, because (p)data.frame
pdim(plm_fe_NA_row      <- plm(form, data=pGrunfeld_NA_row, model="within")) # unbalanced - ok
pdim(plm_fe_NA_row_time <- plm(form, data=pGrunfeld_NA_row, model="within", effect = "time")) # unbalanced - ok
pdim(plm_fe_NA_row_tw   <- plm(form, data=pGrunfeld_NA_row, model="within", effect = "twoways")) # unbalanced - ok

pdim(pGrunfeld_NA_dep_var) # balanced - ok, because (p)data.frame
pdim(plm_fe_NA_dep_var      <- plm(form, data=pGrunfeld_NA_dep_var, model="within")) # unbalanced - ok
pdim(plm_fe_NA_dep_var_time <- plm(form, data=pGrunfeld_NA_dep_var, model="within", effect = "time")) # unbalanced - ok
pdim(plm_fe_NA_dep_var_tw   <- plm(form, data=pGrunfeld_NA_dep_var, model="within", effect = "twoways")) # unbalanced - ok

pdim(pGrunfeld_NA_indep_var) # balanced, because (p)data.frame
pdim(plm_fe_NA_indep_var      <- plm(form, data=pGrunfeld_NA_indep_var, model="within")) # unbalanced - ok
pdim(plm_fe_NA_indep_var_time <- plm(form, data=pGrunfeld_NA_indep_var, model="within", effect = "time")) # unbalanced - ok
pdim(plm_fe_NA_indep_var_tw   <- plm(form, data=pGrunfeld_NA_indep_var, model="within", effect = "twoways")) # unbalanced - ok



##### inspect row numbers in model.frame, model.matrix for various data with and without NAs ####


if (nrow(plm:::model.matrix.plm(plm_fe_NA_row)) != 199) stop("NA not detected") # 199 rows - ok
if (nrow(plm:::model.matrix.pFormula(form, data=pGrunfeld_NA_row, model="within")) != 199) stop("NA not detected") # 199 rows - ok
if (nrow(plm:::model.matrix.pFormula(pFormula(form), data=pGrunfeld_NA_row, model="within")) != 199) stop("NA not detected")


if (nrow(plm:::model.matrix.plm(plm_fe_NA_dep_var)) != 199) stop("NA not detected") # 199 - ok

if (nrow(plm:::model.matrix.pFormula(form, data=pGrunfeld_NA_dep_var, model="within")) != 199) stop("NA not detected") # NOT OK: 200, but should be 199
if (nrow(model.matrix(pFormula(form), data=pGrunfeld_NA_dep_var, model="within")) != 199)  stop("NA not detected") # NOT OK: 200, but should be 199

if (nrow(plm:::model.matrix.pFormula(form, data=pGrunfeld_NA_dep_var, model="pooling")) != 199)  stop("NA not detected") # NOT OK: 200, but should be 199
if (nrow(model.matrix(pFormula(form), data=pGrunfeld_NA_dep_var, model="within")) != 199)  stop("NA not detected") # NOT OK: 200, but should be 199

# ok - 199
if (nrow(plm:::model.matrix.pFormula(form, data=pGrunfeld_NA_dep_var, model="within", effect = "twoways")) != 199) stop("NA not detected")
#MM if (nrow(plm:::model.matrix.pFormula(pFormula(form), data=pGrunfeld_NA_dep_var, model="within", effect = "twoways")) != 199) stop("NA not detected")


if (!isTRUE(all.equal(plm:::model.matrix.pFormula(pFormula(form), data=pGrunfeld_NA_dep_var, model="within", effect = "twoways"),
                      plm:::model.matrix.plm(plm_fe_NA_dep_var_tw), check.attributes = FALSE))) {
  stop("model matrices from estimated model and from formula interface not equal")}
  
########### 1) model.matrix[.pFormula|.plm] ###########


# pooling and within models work if data is a pdata.frame
modmat_pFormula_pdataframe_pool    <- plm:::model.matrix.pFormula(form, data=pGrunfeld, model="pooling") # works
modmat_pFormula_pdataframe_fe      <- plm:::model.matrix.pFormula(form, data=pGrunfeld, model="within")  # works
modmat_pFormula_pdataframe_fe_time <- plm:::model.matrix.pFormula(form, data=pGrunfeld, model="within", effect = "time")   # works
modmat_pFormula_pdataframe_fe_tw   <- plm:::model.matrix.pFormula(form, data=pGrunfeld, model="within", effect = "twoways") # works


# RE fails due to theta = NULL in model.matrix.pFormula (also model.matrix.pFormula needs facilities for random.method (ercomp(, method)))
# modmat_pFormula_pdataframe_re      <- plm:::model.matrix.pFormula(form, data=pGrunfeld, model="random") # error
# modmat_pFormula_pdataframe_re_time <- plm:::model.matrix.pFormula(form, data=pGrunfeld, model="random", effect = "time") # error
# modmat_pFormula_pdataframe_fe_tw   <- plm:::model.matrix.pFormula(form, data=pGrunfeld, model="random", effect = "twoway") # error

# Error:
# Error in plm:::model.matrix.pFormula(form, data = pGrunfeld, model = "random") : 
#   dims [product 600] do not match the length of object [0]




####### Tests for removal of rows in model.matrix.pFormula if dependent var contains NAs


# 200 rows resulting form model.matrix.default - ok for this data set
if (nrow(model.matrix(inv ~ value + capital, data=Grunfeld)) != 200) stop("not correct")
# 200 rows - ok for this data set
if (nrow(plm:::model.matrix.pFormula(inv ~ value + capital, data=pdata.frame(Grunfeld))) != 200) stop("not correct")
if (nrow(plm:::model.matrix.pFormula(pFormula(inv ~ value + capital), data=pdata.frame(Grunfeld))) != 200) stop("not correct")


# 199 rows resulting from model.matrix.default - ok
# NA in dependent variable detected and thus row in model.matrix dropped
if (nrow(stats::model.matrix(inv ~ value + capital, data=Grunfeld_NA_dep_var)) != 199) stop("NA not detected")

# 199 rows in model.frame of estimated plm_model$model - ok
if (nrow(plm(inv ~ value + capital, data=pdata.frame(Grunfeld_NA_dep_var))$model) != 199) stop("NA not detected")


# NOT OK: 200 returned, 199 rows should result from model.matrix.pFormula
# NA in dependent variable _not_ detected and thus row in model.matrix _not_ dropped
# This is due to the Formula package which is does not behave as stats::model.matrix.default does
# for NA handling in dependent variable
if (nrow(plm:::model.matrix.pFormula(pFormula(inv ~ value + capital), data=pdata.frame(Grunfeld_NA_dep_var))) != 199) stop("NA not detected")
if (nrow(plm:::model.matrix.pFormula(inv ~ value + capital, data=pdata.frame(Grunfeld_NA_dep_var))) != 199) stop("NA not detected")


# 199 returned - ok
# NA in independent variable is detected and thus row in model.matrix is dropped
if (nrow(plm:::model.matrix.pFormula(pFormula(inv ~ value + capital), data=pdata.frame(Grunfeld_NA_indep_var))) != 199) stop("NA not detected")

# 199 returned - ok
# NA row is detected and thus dropped
if (nrow(plm:::model.matrix.pFormula(pFormula(inv ~ value + capital), data=pdata.frame(Grunfeld_NA_row))) != 199) stop("NA not detected")



####### some sanity checks - see if various interfaces yield the same result ######
modmat_plm_pool <- model.matrix(plm_pool)
modmat_plm_fe   <- model.matrix(plm_fe)
modmat_plm_re   <- model.matrix(plm_re)
modmat_plm_re_time   <- model.matrix(plm_re_time)
modmat_plm_re_nerlove   <- model.matrix(plm_re_nerlove)

#### Tests

# w/o any NAs
### interfaces: plm vs. pFormula
if (!isTRUE(all.equal(modmat_plm_pool,       modmat_pFormula_pdataframe_pool, check.attributes = FALSE))) stop("FAIL!")
if (!isTRUE(all.equal(modmat_plm_fe,         modmat_pFormula_pdataframe_fe,   check.attributes = FALSE))) stop("FAIL!")
#if (!isTRUE(all.equal(modmat_plm_re,         modmat_pFormula_pdataframe_re, check.attributes = FALSE))) stop("FAIL!")
#if (!isTRUE(all.equal(modmat_plm_re_time,    modmat_pFormula_pdataframe_re_time, check.attributes = FALSE))) stop("FAIL!")
#if (!isTRUE(all.equal(modmat_plm_re_nerlove, modmat_pFormula_pdataframe_re_nerlove, check.attributes = FALSE))) stop("FAIL!")




########### 2) pmodel.response.[pFormula|.plm] ###########

# pmodel.response on regular data.frame (not pdata.frame) -> need to supply a pdata.frame!
# plm:::pmodel.response.pFormula(form, data = Grunfeld, model = "pooling") # warning still in v1.5-14/rev. 175
# plm:::pmodel.response.pFormula(form, data = Grunfeld, model = "within")  # fails
# plm:::pmodel.response.pFormula(form, data = Grunfeld, model = "random")  # fails


# pooling and within models work on pdata.frame with fix in v1.5-14/rev. 175
resp_pFormula_pool  <- plm:::pmodel.response.formula(form, data = pGrunfeld, model = "pooling")
resp_pFormula_fe    <- plm:::pmodel.response.formula(form, data = pGrunfeld, model = "within")
resp_pFormula_fe_tw <- plm:::pmodel.response.formula(form, data = pGrunfeld, model = "within", effect = "twoways")
# resp_pFormula_re    <- plm:::pmodel.response.pFormula(form, data = pGrunfeld, model = "random") # error
# still fails, likely due to theta = NULL in RE model
# resp_pFormula_re <- plm:::pmodel.response.pFormula(form, data = pGrunfeld, model = "random")
#
# Error in model.matrix.pFormula(pFormula(formula), data = data, model = model,  : 
#   dims [product 200] do not match the length of object [0]




resp_pFormula_NA_depvar_fe   <- plm:::pmodel.response.formula(form, data = pGrunfeld_NA_dep_var, model = "within")
# resp_pFormula_NA_depvar_re   <- plm:::pmodel.response.pFormula(form, data = pGrunfeld_NA_dep_var, model = "random") # error
#
#Error in model.matrix.pFormula(pFormula(formula), data = data, model = model,  : 
#  dims [product 199] do not match the length of object [0] 

# pmodel.repsonse.plm
resp_plm_NA_depvar_pool  <- plm:::pmodel.response.plm(plm(form, data = pGrunfeld_NA_dep_var, model = "pooling"))
resp_plm_NA_depvar_fe    <- plm:::pmodel.response.plm(plm(form, data = pGrunfeld_NA_dep_var, model = "within"))
resp_plm_NA_depvar_fe_tw <- plm:::pmodel.response.plm(plm(form, data = pGrunfeld_NA_dep_var, model = "within", effect = "twoways"))
resp_plm_NA_depvar_re    <- plm:::pmodel.response.plm(plm(form, data = pGrunfeld_NA_dep_var, model = "random"))

resp_plm_NA_indepvar_pool  <- plm:::pmodel.response.plm(plm(form, data = pGrunfeld_NA_indep_var, model = "pooling"))
resp_plm_NA_indepvar_fe    <- plm:::pmodel.response.plm(plm(form, data = pGrunfeld_NA_indep_var, model = "within"))
resp_plm_NA_indepvar_fe_tw <- plm:::pmodel.response.plm(plm(form, data = pGrunfeld_NA_indep_var, model = "within", effect = "twoways")) # correct transformation
resp_plm_NA_indepvar_re    <- plm:::pmodel.response.plm(plm(form, data = pGrunfeld_NA_indep_var, model = "random"))


# pmodel.repsonse.pFormula with NA in dependent variable
resp_pFormula_NA_depvar_pool  <- plm:::pmodel.response.formula(form, data = pGrunfeld_NA_dep_var, model = "pooling")
resp_pFormula_NA_depvar_fe    <- plm:::pmodel.response.formula(form, data = pGrunfeld_NA_dep_var, model = "within")
resp_pFormula_NA_depvar_fe_tw <- plm:::pmodel.response.formula(form, data = pGrunfeld_NA_dep_var, model = "within", effect = "twoways")
# NOT OK: error
#resp_pFormula_NA_depvar_re    <- plm:::pmodel.response.pFormula(form, data = pGrunfeld_NA_dep_var, model = "random")

# pmodel.repsonse.pFormula with NA in _in_dependent variable
# NA in independent variable is detected and vector of dependent variable (response) adjusted according (drop the observation)
# -> resulting response has 199 entries, albeit there are 200 obs for the response but NA in independent variable
# -> thus, the results of pmodel.repsonse and model.matrix match
resp_pFormula_NA_indepvar_pool  <- plm:::pmodel.response.formula(form, data = pGrunfeld_NA_indep_var, model = "pooling")
resp_pFormula_NA_indepvar_fe    <- plm:::pmodel.response.formula(form, data = pGrunfeld_NA_indep_var, model = "within")
resp_pFormula_NA_indepvar_fe_tw <- plm:::pmodel.response.formula(form, data = pGrunfeld_NA_indep_var, model = "within", effect = "twoways")
# resp_pFormula_NA_indepvar_re    <- plm:::pmodel.response.pFormula(form, data = pGrunfeld_NA_indep_var, model = "random") # error






#### some sanity checks ###
resp_plm_pool  <- pmodel.response(plm_pool)
resp_plm_fe    <- pmodel.response(plm_fe)
resp_plm_fe_tw <- pmodel.response(plm_fe_tw)
resp_plm_re    <- pmodel.response(plm_re)


##### interfaces: pFormula vs. plm
if (!isTRUE(all.equal(resp_pFormula_pool,  resp_plm_pool))) stop("Fail! resp_pFormula_pool != resp_plm_pool")
if (!isTRUE(all.equal(resp_pFormula_fe,    resp_plm_fe))) stop("Fail! resp_pFormula_fe != resp_plm_fe")
if (!isTRUE(all.equal(resp_pFormula_fe_tw, resp_plm_fe_tw))) stop("Fail! resp_pFormula_fe_tw != resp_plm_fe_tw")
#if (!isTRUE(all.equal(resp_pFormula_re,    resp_plm_re))) stop("Fail! resp_pFormula_re != resp_plm_re")

# with NA in dependent variable
if (!isTRUE(all.equal(resp_plm_NA_depvar_pool,  resp_pFormula_NA_depvar_pool,  check.attributes = FALSE))) stop("Fail! resp_plm_NA_depvar_pool != resp_pFormula_NA_depvar_pool")
if (!isTRUE(all.equal(resp_plm_NA_depvar_fe,    resp_pFormula_NA_depvar_fe,    check.attributes = FALSE))) stop("Fail! resp_plm_NA_depvar_fe != resp_pFormula_NA_depvar_fe")
if (!isTRUE(all.equal(resp_plm_NA_depvar_fe_tw, resp_pFormula_NA_depvar_fe_tw, check.attributes = FALSE))) stop("Fail! resp_plm_NA_depvar_fe_tw != resp_pFormula_NA_depvar_fe_tw")
#if (!isTRUE(all.equal(resp_plm_NA_depvar_re,    resp_pFormula_NA_depvar_re, check.attributes = FALSE))) stop("Fail! resp_plm_NA_depvar_re != resp_pFormula_NA_depvar_re")


# OK: with NA in _in_dependent variable
if (!isTRUE(all.equal(resp_plm_NA_indepvar_pool,  resp_pFormula_NA_indepvar_pool,  check.attributes = FALSE))) stop("Fail! resp_plm_NA_indepvar_pool != resp_pFormula_NA_indepvar_pool")
if (!isTRUE(all.equal(resp_plm_NA_indepvar_fe,    resp_pFormula_NA_indepvar_fe,    check.attributes = FALSE))) stop("Fail! resp_plm_NA_indepvar_fe != resp_pFormula_NA_indepvar_fe")
if (!isTRUE(all.equal(resp_plm_NA_indepvar_fe_tw, resp_pFormula_NA_indepvar_fe_tw, check.attributes = FALSE))) stop("Fail! resp_plm_NA_indepvar_fe_tw != resp_pFormula_NA_indepvar_fe_tw")
# if (!isTRUE(all.equal(resp_plm_NA_indepvar_re    == resp_pFormula_NA_indepvar_re, check.attributes = FALSE))) stop("Fail! resp_plm_NA_indepvar_re != resp_pFormula_NA_indepvar_re")

Try the plm package in your browser

Any scripts or data that you put into this service are public.

plm documentation built on Sept. 21, 2021, 3:01 p.m.