tests/test_pbsytest_unbalanced.R

# test pbsytest() - unbalanced and balanced version

################### Bera, Sosa-Escudero and Yoon (2001) and joint test of Baltagi/Li (1991) ###############
# see Baltagi (2005), Econometric Analysis of Panel Data, 3rd edition, pp. 96-97
#  or Baltagi (2013), Econometric Analysis of Panel Data, 5th edition, p. 108.
#
##  only balanced tests described in Bera, Sosa-Escudero and Yoon (2001) and Baltagi (2005, 2013)!
#
# Baltagi (2013), p. 108:
# Grunfeld data,  (table 4.2)
# LM_mu = 798.162 (with Stata's xttest0 command) [-> plmtest(pool_grunfeld, type = "bp")]
# LM_rho = 143.523, LM*_mu = 664.948, LM*_rho = 10.310, joint test (LM1) = 808.471 (all using TSP)
#
# comments about significance in book:
# joint test (LM1): rejects null hypo (no first-order serial correlation and no random effects)
# LM_rho, LM*_rho:  reject null hypo (no first-order serial correlation)
# LM_mu, LM*_mu:    reject null hypo (no random effects)


library(plm)
data("Grunfeld", package = "plm")
Grunfeldpdata <- pdata.frame(Grunfeld, index = c("firm", "year"), drop.index = FALSE, row.names = TRUE)
form_gunfeld <- formula(inv ~ value + capital)
pool_grunfeld <- plm(form_gunfeld, data = Grunfeldpdata, model="pooling")

pbsytest(pool_grunfeld, test = "ar")                    # chisq = 10.31    => LM*_rho  in Baltagi's book (RS*_lambda from Sosa-Escudero/Bera (2008), p. 73)
pbsytest(pool_grunfeld, test = "re", re.normal = FALSE) # chisq = 664.948  => LM*_mu in Baltagi's book (RS*_mu from Sosa-Escudero/Bera (2008), p. 73)
pbsytest(pool_grunfeld, test = "re")                    # [sqrt(chisq) = z = 25.787] =>  RSO*_mu from Sosa-Escudero/Bera (2008), p. 75
pbsytest(pool_grunfeld, test = "j")                     # chisq = 808.47   => LM1 in Baltagi's book (RS_lambda_mu in Sosa-Escudero/Bera (2008), p. 74)

# formula interface
pbsytest(form_gunfeld, data = Grunfeld, test = "ar")
pbsytest(form_gunfeld, data = Grunfeld, test = "re")
pbsytest(form_gunfeld, data = Grunfeld, test = "re", re.normal = FALSE)
pbsytest(form_gunfeld, data = Grunfeld, test = "j")

plmtest(pool_grunfeld, type = "bp") # LM_mu in Baltagi's book

############### balanced version ###################
### Results from Bera et al. (2001), p. 13:

## Bera/Sosa-Escudero/Yoon (2001), Tests for the error component model in the presence of local misspecifcation,
##                                 Journal of Econometrics 101 (2001), pp. 1-23.

# To replicate, a special version of the Grunfeld data set is needed: only 5 selected firms (total of 100 obs)
# from http://pages.stern.nyu.edu/~wgreene/Text/tables/TableF13-1.txt
# or   http://statmath.wu.ac.at/~zeileis/grunfeld/TableF13-1.txt
#
# NB: this data set contains 3 errors compared to the original Grunfeld data, see e.g., the 
#     analysis of various different Grundfeld data sets circulating at http://statmath.wu-wien.ac.at/~zeileis/grunfeld/
#     or https://eeecon.uibk.ac.at/~zeileis/grunfeld/
#
## commented due to file download

# Grunfeld_greene_5firms <- read.csv("http://pages.stern.nyu.edu/~wgreene/Text/tables/TableF13-1.txt", sep="")
# # Grunfeld_greene_5firms <- read.csv("http://statmath.wu.ac.at/~zeileis/grunfeld/TableF13-1.txt", sep="") # alternative source
# 
# # Matching to Grunfeld data set in plm
# # Grunfeld[c(1:20, 41:60), 3:5] == Grunfeld_greene_5firms[c(1:20, 41:60), 3:5]
# # Grunfeld[61:80, 3:5]          == Grunfeld_greene_5firms[21:40, 3:5]
# # Grunfeld[141:160, 3:5]        == Grunfeld_greene_5firms[61:80, 3:5]
# # Grunfeld[21:40, 3:5]          == Grunfeld_greene_5firms[81:100, 3:5] # almost all equal, 3 values differ (3 errors in the Greene 5 firm version)
# 
# pGrunfeld_greene_5firms <- pdata.frame(Grunfeld_greene_5firms, index = c("Firm", "Year"), drop.index = FALSE, row.names = TRUE)
# form_gunfeld_half <- formula(I ~ F + C)
# pool_grunfeld_half <- plm(form_gunfeld_half, data=pGrunfeld_greene_5firms, model = "pooling")
# re_grunfeld_half   <- plm(form_gunfeld_half, data=pGrunfeld_greene_5firms, model = "random")
# 
# pbsytest(pool_grunfeld_half, test = "ar")                    # chisq = 3.7125         => RS*_rho in Bera et al. (2001), p. 13
# pbsytest(pool_grunfeld_half, test = "re")                    # normal = 19.601; p = 0 => RSO*_mu
# pbsytest(pool_grunfeld_half, test = "re", re.normal = FALSE) # chisq = 384.183 => RS*_mu  [sqrt(chisq) = z = 19.601]
# pbsytest(pool_grunfeld_half, test = "j")                     # chisq = 457.53         => RS_mu_rho
# 
# # plmtest's statistic is also mentioned in paper
# plmtest(pool_grunfeld_half, type = "bp")              # chisq = 453.82   => RS_mu   in Bera et al. (2001), p. 13
# plmtest(pool_grunfeld_half, type = "honda")           # normal = 21.3031 => RSO_mu
# 
# 
# ## RS_rho in Bera et al (2001), p. 9 (formula 19) is not implemented
# ## it's origin is in Baltagi/Li (1991), but there is is just a side result
# ## in terms of n, t, b of pbsystest it is: (n*t^2*(B^2)) / (t-1)
# 
# # formula interface
# pbsytest(form_gunfeld_half, data = pGrunfeld_greene_5firms, test = "ar")
# pbsytest(form_gunfeld_half, data = pGrunfeld_greene_5firms, test = "re")
# pbsytest(form_gunfeld_half, data = pGrunfeld_greene_5firms, test = "re", re.normal = FALSE)
# pbsytest(form_gunfeld_half, data = pGrunfeld_greene_5firms, test = "j")
# 
# plmtest(form_gunfeld_half, data = pGrunfeld_greene_5firms, type = "bp")


############ Replicate tests from original paper Sosa-Escudero/Bera (2008) ####################
############ unbalanced panel                                              ####################
##
## data set for test from Sosa-Escudero/Bera (2008), pp. 75-77
## available as Stata .dta file at http://www.stata-journal.com/software/sj8-1/sg164_1/ginipanel5.dta
##
## Sosa-Escudero/Bera (2008), Tests for unbalanced error-components models under local misspecification,
##                            The Stata Journal (2008), Vol. 8, Number 1, pp. 68-78.

## Commented due to extra package needed

# library(haven)
# ginipanel5 <- read_dta("http://www.stata-journal.com/software/sj8-1/sg164_1/ginipanel5.dta")
# pginipanel5 <- pdata.frame(ginipanel5, index = c("naglo", "ano"), drop.index = FALSE, row.names = TRUE)
# 
# # Stata command for RE model: xtreg gini ie ie2 indus adpubedsal desempleo tactiv invipib apertura pyas4 e64 supc tamfam, re
# # use pooling model in R:
# formula_gini <- formula(gini ~ ie + ie2 + indus + adpubedsal + desempleo + tactiv + invipib + apertura + pyas4 + e64 + supc + tamfam)
# pool_gini <- plm(formula_gini, data = pginipanel5, model = "pooling")
# 
# pdim(pool_gini) # Unbalanced Panel: n=17, T=6-8, N=128
# 
# # Stata's Output of xttest1, unadjusted (Sosa-Escudero/Bera (2008), p. 77):
# #
# # Random Effects, Two Sided:
# #   LM(Var(u)=0) = 13.50 Pr>chi2(1) = 0.0002
# #  ALM(Var(u)=0) = 6.03  Pr>chi2(1) = 0.0141              # test="re", re.normal = FALSE
# #
# # Random Effects, One Sided:
# #   LM(Var(u)=0) = 3.67 Pr>N(0,1) = 0.0001
# #  ALM(Var(u)=0) = 2.46 Pr>N(0,1) = 0.0070                # test="re", re.normal = TRUE
# #
# # Serial Correlation:
# #   LM(lambda=0) = 9.32 Pr>chi2(1) = 0.0023
# #  ALM(lambda=0) = 1.86 Pr>chi2(1) = 0.1732               # test="ar"
# #
# # Joint Test:
# #   LM(Var(u)=0,lambda=0) = 15.35 Pr>chi2(2) = 0.0005     # test="j"
# 
# 
# pbsytest(pool_gini, test = "re", re.normal = FALSE)    # chisq = 6.0288793,  df = 1, p-value = 0.01407367
# pbsytest(pool_gini, test = "re")                       # normal = 2.4553776,  n/a    p-value = 0.007036833
# pbsytest(pool_gini, test = "ar")                       # chisq = 1.8550073,  df = 1, p-value = 0.1732021
# pbsytest(pool_gini, test = "j")                        # chisq = 15.352307,  df = 2, p-value = 0.0004637552
# 
# # formula interface
# pbsytest(formula_gini, data = pginipanel5, test = "re", re.normal = FALSE)  # chisq = 6.0288793,  df = 1, p-value = 0.01407367
# pbsytest(formula_gini, data = pginipanel5, test = "re")                     # normal = 2.4553776,   n/a   p-value = 0.007036833
# pbsytest(formula_gini, data = pginipanel5, test = "ar")                     # chisq = 1.8550073,  df = 1, p-value = 0.1732021
# pbsytest(formula_gini, data = pginipanel5, test = "j")                      # chisq = 15.352307,  df = 2, p-value = 0.0004637552
# 

Try the plm package in your browser

Any scripts or data that you put into this service are public.

plm documentation built on Sept. 21, 2021, 3:01 p.m.