Nothing
##
## l i n e a r p r o j . R Linear and affine projection
##
linearproj <- function(A, B) {
# Return the projection of points in the columns of B
# onto the linear subspace spaned by the columns of A.
stopifnot(is.numeric(A), is.numeric(B))
if (!is.matrix(A)) A <- as.matrix(A)
if (!is.matrix(B)) B <- as.matrix(B)
nA <- nrow(A); mA <- ncol(A)
nB <- nrow(B); mB <- ncol(B)
if (nA != nB) # dimension of R^n
stop("Arguments 'A', 'B' must have the same number of rows.")
if (Rank(A) < mA)
stop("Matrix 'A' does not have maximal rank -- not a basis.")
P <- qr.solve(t(A) %*% A, t(A) %*% B)
Q <- A %*% P
return(list(P = P, Q = Q))
}
affineproj <- function(x0, C, b, unbound = TRUE, maxniter = 100) {
if (unbound) {
# Return projection of x0 onto the affine subspace
# C x = b and the distance of x0 from this subspace.
mC <- nrow(C); nC <- ncol(C) # n dimension, m codimension
CC <- C %*% t(C)
xp <- (diag(1, nC) - t(C) %*% qr.solve(CC, C)) %*% x0 +
t(C) %*% qr.solve(CC, b)
d <- Norm(xp)
return(list(proj = xp, dist = d, niter = 0))
} else {
# C fast projection method for enforcing equality and
# positivity constraints: C x = b and x >= 0
svdC <- svd(C); x <- x0
svdmat <- svdC$v %*% diag(1/svdC$d, length(svdC$d)) %*% t(svdC$u)
iterate <- TRUE; niter <- 0
while(iterate & niter <= maxniter) {
niter <- niter + 1
bCx <- (b - c(C %*% x))
x <- x + c(svdmat %*% bCx)
if (any(x < 0)) x[x < 0] <- 0 else iterate <- FALSE
}
d <- Norm(x0 - x)
return(list(proj = x, dist = d, niter = niter))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.