Nothing
##
## q r . R QR Factorization
##
# Modified Gram-Schmidt process
gramSchmidt <- function(A, tol = .Machine$double.eps^0.5) {
stopifnot(is.numeric(A), is.matrix(A))
m <- nrow(A); n <- ncol(A)
if (m < n)
stop("No. of rows of 'A' must be greater or equal no. of colums.")
Q <- matrix(0, m, n)
R <- matrix(0, n, n)
for (k in 1:n) {
Q[, k] <- A[, k]
if (k > 1) {
for (i in 1:(k-1)) {
R[i, k] <- t(Q[, i]) %*% Q[, k]
Q[ , k] <- Q[, k] - R[i, k] * Q[, i]
}
}
R[k, k] <- Norm(Q[, k])
if (abs(R[k, k]) <= tol)
stop("Matrix 'A' does not have full rank.")
Q[, k] <- Q[, k] / R[k, k]
}
return(list(Q = Q, R = R))
}
qrSolve <- function(A, b) {
stopifnot(is.numeric(A), is.matrix(A), is.numeric(b))
m <- nrow(A); n <- ncol(A)
b <- c(b)
if (m < n || length(b) != m)
stop("Matrix 'A' and vektor 'b' have non-fitting dimensions.")
gs <- householder(A)
Q <- gs$Q; R <- gs$R
b <- t(Q[, 1:n]) %*% b
x <- numeric(n)
x[n] <- b[n] / R[n, n]
for (k in (n-1):1)
x[k] <- (b[k] - R[k, (k+1):n] %*% x[(k+1):n]) / R[k, k]
return(x)
}
# Givens transformation
.givens <- function(xk, xl) {
if (xl != 0) {
r <- Norm(c(xk, xl))
G <- matrix(c(xk, -xl, xl, xk), 2, 2) / r
x <- as.matrix(c(r, 0))
} else {
G <- eye(2)
x <- as.matrix(c(xk, 0))
}
return(list(G = G, x = x))
}
# Givens QR decomposition
givens <- function(A) { # n >= m
stopifnot(is.numeric(A), is.matrix(A))
n <- nrow(A); m <- ncol(A)
if (n != m)
stop("Matrix 'A' must be a square matrix.")
Q <- eye(n)
for (k in 1:(n-1)) {
l <- which.max(abs(A[(k+1):n, k])) + k
if (A[k, k] == 0 && A[l, k] == 0)
stop("Matrix 'A' does not have full rank.")
j <- which(A[(k+1):n, k] != 0) + k
j <- unique(c(l, j[j != 1]))
for (h in j) {
gv <- .givens(A[k, k], A[h, k])
G <- gv$G; x <- gv$x
Q[c(k, h), ] <- G %*% Q[c(k, h), ]
A[k, k] <- x[1]
A[h, k] <- 0
A[c(k, h), (k+1):m] <- G %*% A[c(k, h), (k+1):m]
}
}
return(list(Q = t(Q), R = triu(A)))
}
# Householder transformation
householder <- function(A) {
m <- nrow(A); n <- ncol(A)
Q <- eye(m)
for (k in 1:min(m-1, n)) {
ak <- A[k:m, k, drop = FALSE]
s <- if (ak[1] >= 0) 1 else -1
vk <- ak + s * Norm(ak) * c(1, rep(0, m-k))
vk2 <- c(t(vk) %*% vk)
Hk <- eye(m-k+1) - 2/vk2 * (vk %*% t(vk))
if (k == 1) Qk <- Hk
else Qk <- blkdiag(eye(k-1), Hk)
A <- Qk %*% A
Q <- Q %*% Qk
}
return(list(Q = Q, R = A))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.