Nothing
###
### ROOTS.R Matlab ROOTS Function
###
roots <- function(p) {
if (is.null(p) || length(p) == 0) return(matrix(0, nrow=0, ncol=0))
if ( !is.vector(p, mode="numeric") &&
!is.vector(p, mode="complex") )
stop("Argument p must be a vector of real or complex numbers.")
if (length(p) == 1) return(matrix(0, nrow=0, ncol=0))
# Find non-zero entries in p
inz <- which(p != 0)
nnz <- length(inz)
if (nnz == 0) return(c())
# Strip leading and trailing zeros, but remember the trailing zeros
q <- p[inz[1]:inz[nnz]]
r <- rep(0, length(p) - inz[nnz])
A <- compan(q)
return(c(r, eig(A)))
}
# Greatest common factor/divisor of polynomials
polygcf <- function(p, q, tol=1e-12) {
if ( !is.vector(p, mode="numeric") && !is.vector(p, mode="complex") )
stop("Arguments 'p' must be a real or complex vector.")
if ( !is.vector(q, mode="numeric") && !is.vector(q, mode="complex") )
stop("Arguments 'q' must be a real or complex vector.")
np <- Norm(p)
pd <- polydiv(p,q)
a <- pd$d; r0 <- pd$r
if (Norm(r0) > np*tol) {
pd <- polydiv(q,r0)
a <- pd$d; r1 <- pd$r
if (Norm(r1) > np*tol) {
rn <- 1
while (Norm(rn) > np*tol) {
pd <- polydiv(r0,r1)
a <- pd$d; rn <- pd$r
r0 <- r1
r1 <- rn
}
g <- r0
} else {
g <- r0
}
} else {
g <- q
}
# g <- g / g[1]
return(g)
}
# Determine multiplicity of polynomial roots
rootsmult <- function(p, r, tol=1e-12) {
np <- Norm(p)
v <- abs(polyval(p, r))
if (v > np*tol) {
warning("Value 'r' is not root of polynomial 'p'.")
return(0)
} else {
n <- 0
while (v < np*tol) {
p <- polyder(p)
v <- abs(polyval(p,r))
n <- n+1
}
return(n)
}
}
# Find the multiplicity of all roots of a polynomial
polyroots <- function(p, ntol = 1e-04, ztol = 1e-08) {
stopifnot(is.numeric(p))
# Multiplicity of 0 as root
wp <- which(p != 0)
minp <- min(wp); maxp <- max(wp)
mz <- length(p) - maxp
p0 <- p[minp:maxp]
zp <- zm <- c()
if (mz > 0) {zp <- c(zp, 0); zm <- c(zm, mz)}
if (length(p0) < 2) return(data.frame(root = zp, mult = zm))
s <- abs(p0[length(p0)] / p0[1])
if (s < 1) p0 <- p0[length(p0):1]
q0 <- polyder(p0)
g1 <- p0 / p0[1]
g2 <- q0[1:max(which(q0 != 0))] / q0[1]
for (k in 3:(2*length(p0))) {
l12 <- length(g1) - length(g2); l21 <- -l12
g3 <- c(g2, zeros(1, l12)) - c(g1, zeros(1, l21))
wh <- which(abs(g3) > ztol)
g3 <- if (isempty(wh)) c(0) else g3[min(wh):max(wh)]
ren <- Norm(g3, Inf) / Norm(g2, Inf)
if (ren < ntol) break
if(l12 >= 0) g1 <- g2
g2 <- g3 / g3[1]
}
g0 <- g1
u0 <- deconv(p0, g0)$q
v0 <- deconv(q0, g0)$q
w0 <- polyder(u0)
z0 <- roots(u0)
m0 <- polyval(v0, z0) / polyval(w0, z0)
if (s < 1) z0 <- z0^-1
zp <- c(zp, z0); zm <- c(zm, round(abs(m0)))
return(data.frame(root = zp, mult = zm))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.