| summary.lmrob | R Documentation |
Summary method for R object of class "lmrob" and
print method for the summary object.
Further, methods fitted(), residuals()
work (via the default methods), and
predict() (see predict.lmrob,
vcov(), weights() (see
weights.lmrob), model.matrix(),
confint(), dummy.coef(),
hatvalues(), etc.,
have explicitly defined lmrob methods. .lmrob.hat() is
the lower level “work horse” of the hatvalues() method.
## S3 method for class 'lmrob'
summary(object, correlation = FALSE,
symbolic.cor = FALSE, ...)
## S3 method for class 'summary.lmrob'
print(x, digits = max(3, getOption("digits") - 3),
symbolic.cor= x$symbolic.cor,
signif.stars = getOption("show.signif.stars"),
showAlgo = TRUE, ...)
## S3 method for class 'lmrob'
vcov(object, cov = object$control$cov, complete = TRUE, ...)
## S3 method for class 'lmrob'
model.matrix(object, ...)
object |
an R object of class |
correlation |
logical variable indicating whether to compute the correlation matrix of the estimated coefficients. |
symbolic.cor |
logical indicating whether to use symbols to display the above correlation matrix. |
x |
an R object of class |
digits |
number of digits for printing, see |
signif.stars |
logical variable indicating whether to use stars to display different levels of significance in the individual t-tests. |
showAlgo |
optional |
cov |
covariance estimation function to use, a
object$cov <- vcov(object, cov = ".vcov.w") allows to update the fitted object. |
complete |
(mainly for R |
... |
potentially more arguments passed to methods. |
summary(object) returns an object of S3 class
"summary.lmrob", basically a list with components
"call", "terms", "residuals", "scale", "rweights", "converged",
"iter", "control" all copied from object, and further
components, partly for compatibility with summary.lm,
coefficients |
a |
df |
degrees of freedom, in an |
sigma |
identical to |
aliased |
.. |
cov |
derived from |
r.squared |
robust “R squared” or |
adj.r.squared |
an adjusted R squared, see |
Renaud, O. and Victoria-Feser, M.-P. (2010). A robust coefficient of determination for regression, Journal of Statistical Planning and Inference 140, 1852-1862.
lmrob, predict.lmrob,
weights.lmrob, summary.lm,
print, summary.
mod1 <- lmrob(stack.loss ~ ., data = stackloss)
sa <- summary(mod1) # calls summary.lmrob(....)
sa # dispatches to call print.summary.lmrob(....)
## correlation between estimated coefficients:
cov2cor(vcov(mod1))
cbind(fit = fitted(mod1), resid = residuals(mod1),
wgts= weights(mod1, type="robustness"),
predict(mod1, interval="prediction"))
data(heart)
sm2 <- summary( m2 <- lmrob(clength ~ ., data = heart) )
sm2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.