Nothing
# coefficients from sfacross ----
coef.sfacross <- function(object, extraPar = FALSE, ...) {
if (length(extraPar) != 1 || !is.logical(extraPar[1]))
stop("argument 'extraPar' must be a single logical value",
call. = FALSE)
cRes <- object$mlParam
if (extraPar) {
if (object$udist == "tnormal") {
if (object$scaling) {
beta <- object$mlParam[1:(object$nXvar)]
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
(object$nuZUvar - 1))]
tau <- object$mlParam[object$nXvar + (object$nuZUvar -
1) + 1]
cu <- object$mlParam[object$nXvar + (object$nuZUvar -
1) + 2]
phi <- object$mlParam[(object$nXvar + (object$nuZUvar -
1) + 2 + 1):(object$nXvar + (object$nuZUvar -
1) + 2 + object$nvZVvar)]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 4)
Wu <- cu + 2 * as.numeric(crossprod(matrix(delta),
t(uHvar[, -1])))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
} else {
delta <- object$mlParam[(object$nXvar + object$nmuZUvar +
1):(object$nXvar + object$nmuZUvar + object$nuZUvar)]
phi <- object$mlParam[(object$nXvar + object$nmuZUvar +
object$nuZUvar + 1):(object$nXvar + object$nmuZUvar +
object$nuZUvar + object$nvZVvar)]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 4)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
}
} else {
if (object$udist == "lognormal") {
delta <- object$mlParam[(object$nXvar + object$nmuZUvar +
1):(object$nXvar + object$nmuZUvar + object$nuZUvar)]
phi <- object$mlParam[(object$nXvar + object$nmuZUvar +
object$nuZUvar + 1):(object$nXvar + object$nmuZUvar +
object$nuZUvar + object$nvZVvar)]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 4)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
} else {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
phi <- object$mlParam[(object$nXvar + object$nuZUvar +
1):(object$nXvar + object$nuZUvar + object$nvZVvar)]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
}
}
if (object$udist == "lognormal" || (object$udist == "tnormal" &
object$scaling == FALSE)) {
if (object$nuZUvar > 1 || object$nvZVvar > 1 || object$nmuZUvar >
1)
cat("Variances averaged over observations \n\n")
} else {
if (object$nuZUvar > 1 || object$nvZVvar > 1)
cat("Variances averaged over observations \n\n")
}
cRes <- c(cRes, sigmaSq = mean(exp(Wu)) + mean(exp(Wv)),
lambdaSq = mean(exp(Wu))/mean(exp(Wv)), sigmauSq = mean(exp(Wu)),
sigmavSq = mean(exp(Wv)), sigma = sqrt(mean(exp(Wu)) +
mean(exp(Wv))), lambda = sqrt(mean(exp(Wu))/mean(exp(Wv))),
sigmau = sqrt(mean(exp(Wu))), sigmav = sqrt(mean(exp(Wv))),
gamma = mean(exp(Wu))/(mean(exp(Wu)) + mean(exp(Wv))))
}
return(cRes)
}
# coefficients from lcmcross ----
coef.lcmcross <- function(object, extraPar = FALSE, ...) {
if (length(extraPar) != 1 || !is.logical(extraPar[1]))
stop("argument 'extraPar' must be a single logical value",
call. = FALSE)
cRes <- object$mlParam
if (extraPar) {
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
delta1 <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
phi1 <- object$mlParam[(object$nXvar + object$nuZUvar +
1):(object$nXvar + object$nuZUvar + object$nvZVvar)]
delta2 <- object$mlParam[(2 * object$nXvar + object$nuZUvar +
object$nvZVvar + 1):(2 * object$nXvar + 2 * object$nuZUvar +
object$nvZVvar)]
phi2 <- object$mlParam[(2 * object$nXvar + 2 * object$nuZUvar +
object$nvZVvar + 1):(2 * object$nXvar + 2 * object$nuZUvar +
2 * object$nvZVvar)]
Wu1 <- as.numeric(crossprod(matrix(delta1), t(uHvar)))
Wv1 <- as.numeric(crossprod(matrix(phi1), t(vHvar)))
Wu2 <- as.numeric(crossprod(matrix(delta2), t(uHvar)))
Wv2 <- as.numeric(crossprod(matrix(phi2), t(vHvar)))
if (object$nClasses == 3) {
delta3 <- object$mlParam[(3 * object$nXvar + 2 *
object$nuZUvar + 2 * object$nvZVvar + 1):(3 *
object$nXvar + 3 * object$nuZUvar + 2 * object$nvZVvar)]
phi3 <- object$mlParam[(3 * object$nXvar + 3 * object$nuZUvar +
2 * object$nvZVvar + 1):(3 * object$nXvar + 3 *
object$nuZUvar + 3 * object$nvZVvar)]
Wu3 <- as.numeric(crossprod(matrix(delta3), t(uHvar)))
Wv3 <- as.numeric(crossprod(matrix(phi3), t(vHvar)))
} else {
if (object$nClasses == 4) {
delta3 <- object$mlParam[(3 * object$nXvar +
2 * object$nuZUvar + 2 * object$nvZVvar + 1):(3 *
object$nXvar + 3 * object$nuZUvar + 2 * object$nvZVvar)]
phi3 <- object$mlParam[(3 * object$nXvar + 3 *
object$nuZUvar + 2 * object$nvZVvar + 1):(3 *
object$nXvar + 3 * object$nuZUvar + 3 * object$nvZVvar)]
delta4 <- object$mlParam[(4 * object$nXvar +
3 * object$nuZUvar + 3 * object$nvZVvar + 1):(4 *
object$nXvar + 4 * object$nuZUvar + 3 * object$nvZVvar)]
phi4 <- object$mlParam[(4 * object$nXvar + 4 *
object$nuZUvar + 3 * object$nvZVvar + 1):(4 *
object$nXvar + 4 * object$nuZUvar + 4 * object$nvZVvar)]
Wu3 <- as.numeric(crossprod(matrix(delta3), t(uHvar)))
Wv3 <- as.numeric(crossprod(matrix(phi3), t(vHvar)))
Wu4 <- as.numeric(crossprod(matrix(delta4), t(uHvar)))
Wv4 <- as.numeric(crossprod(matrix(phi4), t(vHvar)))
} else {
if (object$nClasses == 5) {
delta3 <- object$mlParam[(3 * object$nXvar +
2 * object$nuZUvar + 2 * object$nvZVvar +
1):(3 * object$nXvar + 3 * object$nuZUvar +
2 * object$nvZVvar)]
phi3 <- object$mlParam[(3 * object$nXvar +
3 * object$nuZUvar + 2 * object$nvZVvar +
1):(3 * object$nXvar + 3 * object$nuZUvar +
3 * object$nvZVvar)]
delta4 <- object$mlParam[(4 * object$nXvar +
3 * object$nuZUvar + 3 * object$nvZVvar +
1):(4 * object$nXvar + 4 * object$nuZUvar +
3 * object$nvZVvar)]
phi4 <- object$mlParam[(4 * object$nXvar +
4 * object$nuZUvar + 3 * object$nvZVvar +
1):(4 * object$nXvar + 4 * object$nuZUvar +
4 * object$nvZVvar)]
delta5 <- object$mlParam[(5 * object$nXvar +
4 * object$nuZUvar + 4 * object$nvZVvar +
1):(5 * object$nXvar + 5 * object$nuZUvar +
4 * object$nvZVvar)]
phi5 <- object$mlParam[(5 * object$nXvar +
5 * object$nuZUvar + 4 * object$nvZVvar +
1):(5 * object$nXvar + 5 * object$nuZUvar +
5 * object$nvZVvar)]
Wu3 <- as.numeric(crossprod(matrix(delta3),
t(uHvar)))
Wv3 <- as.numeric(crossprod(matrix(phi3), t(vHvar)))
Wu4 <- as.numeric(crossprod(matrix(delta4),
t(uHvar)))
Wv4 <- as.numeric(crossprod(matrix(phi4), t(vHvar)))
Wu5 <- as.numeric(crossprod(matrix(delta5),
t(uHvar)))
Wv5 <- as.numeric(crossprod(matrix(phi5), t(vHvar)))
}
}
}
if (object$nuZUvar > 1 || object$nvZVvar > 1)
cat("Variances averaged over observations \n\n")
cRes <- c(cRes, sigmaSq1 = mean(exp(Wu1)) + mean(exp(Wv1)),
lambdaSq1 = mean(exp(Wu1))/mean(exp(Wv1)), sigmauSq1 = mean(exp(Wu1)),
sigmavSq1 = mean(exp(Wv1)), sigma1 = sqrt(mean(exp(Wu1)) +
mean(exp(Wv1))), lambda1 = sqrt(mean(exp(Wu1))/mean(exp(Wv1))),
sigmau1 = sqrt(mean(exp(Wu1))), sigmav1 = sqrt(mean(exp(Wv1))),
gamma1 = mean(exp(Wu1))/(mean(exp(Wu1)) + mean(exp(Wv1))),
sigmaSq2 = mean(exp(Wu2)) + mean(exp(Wv2)), lambdaSq2 = mean(exp(Wu2))/mean(exp(Wv2)),
sigmauSq2 = mean(exp(Wu2)), sigmavSq2 = mean(exp(Wv2)),
sigma2 = sqrt(mean(exp(Wu2)) + mean(exp(Wv2))), lambda2 = sqrt(mean(exp(Wu2))/mean(exp(Wv2))),
sigmau2 = sqrt(mean(exp(Wu2))), sigmav2 = sqrt(mean(exp(Wv2))),
gamma2 = mean(exp(Wu2))/(mean(exp(Wu2)) + mean(exp(Wv2))))
if (object$nClasses == 3) {
cRes <- c(cRes, sigmaSq3 = mean(exp(Wu3)) + mean(exp(Wv3)),
lambdaSq3 = mean(exp(Wu3))/mean(exp(Wv3)), sigmauSq3 = mean(exp(Wu3)),
sigmavSq3 = mean(exp(Wv3)), sigma3 = sqrt(mean(exp(Wu3)) +
mean(exp(Wv3))), lambda3 = sqrt(mean(exp(Wu3))/mean(exp(Wv3))),
sigmau3 = sqrt(mean(exp(Wu3))), sigmav3 = sqrt(mean(exp(Wv3))),
gamma3 = mean(exp(Wu3))/(mean(exp(Wu3)) + mean(exp(Wv3))))
} else {
if (object$nClasses == 4) {
cRes <- c(cRes, sigmaSq3 = mean(exp(Wu3)) + mean(exp(Wv3)),
lambdaSq3 = mean(exp(Wu3))/mean(exp(Wv3)),
sigmauSq3 = mean(exp(Wu3)), sigmavSq3 = mean(exp(Wv3)),
sigma3 = sqrt(mean(exp(Wu3)) + mean(exp(Wv3))),
lambda3 = sqrt(mean(exp(Wu3))/mean(exp(Wv3))),
sigmau3 = sqrt(mean(exp(Wu3))), sigmav3 = sqrt(mean(exp(Wv3))),
gamma3 = mean(exp(Wu3))/(mean(exp(Wu3)) + mean(exp(Wv3))),
sigmaSq4 = mean(exp(Wu4)) + mean(exp(Wv4)),
lambdaSq4 = mean(exp(Wu4))/mean(exp(Wv4)),
sigmauSq4 = mean(exp(Wu4)), sigmavSq4 = mean(exp(Wv4)),
sigma4 = sqrt(mean(exp(Wu4)) + mean(exp(Wv4))),
lambda4 = sqrt(mean(exp(Wu4))/mean(exp(Wv4))),
sigmau4 = sqrt(mean(exp(Wu4))), sigmav4 = sqrt(mean(exp(Wv4))),
gamma4 = mean(exp(Wu4))/(mean(exp(Wu4)) + mean(exp(Wv4))))
} else {
if (object$nClasses == 5) {
cRes <- c(cRes, sigmaSq3 = mean(exp(Wu3)) +
mean(exp(Wv3)), lambdaSq3 = mean(exp(Wu3))/mean(exp(Wv3)),
sigmauSq3 = mean(exp(Wu3)), sigmavSq3 = mean(exp(Wv3)),
sigma3 = sqrt(mean(exp(Wu3)) + mean(exp(Wv3))),
lambda3 = sqrt(mean(exp(Wu3))/mean(exp(Wv3))),
sigmau3 = sqrt(mean(exp(Wu3))), sigmav3 = sqrt(mean(exp(Wv3))),
gamma3 = mean(exp(Wu3))/(mean(exp(Wu3)) +
mean(exp(Wv3))), sigmaSq4 = mean(exp(Wu4)) +
mean(exp(Wv4)), lambdaSq4 = mean(exp(Wu4))/mean(exp(Wv4)),
sigmauSq4 = mean(exp(Wu4)), sigmavSq4 = mean(exp(Wv4)),
sigma4 = sqrt(mean(exp(Wu4)) + mean(exp(Wv4))),
lambda4 = sqrt(mean(exp(Wu4))/mean(exp(Wv4))),
sigmau4 = sqrt(mean(exp(Wu4))), sigmav4 = sqrt(mean(exp(Wv4))),
gamma4 = mean(exp(Wu4))/(mean(exp(Wu4)) +
mean(exp(Wv4))), sigmaSq5 = mean(exp(Wu5)) +
mean(exp(Wv5)), lambdaSq5 = mean(exp(Wu5))/mean(exp(Wv5)),
sigmauSq5 = mean(exp(Wu5)), sigmavSq5 = mean(exp(Wv5)),
sigma5 = sqrt(mean(exp(Wu5)) + mean(exp(Wv5))),
lambda5 = sqrt(mean(exp(Wu5))/mean(exp(Wv5))),
sigmau5 = sqrt(mean(exp(Wu5))), sigmav5 = sqrt(mean(exp(Wv5))),
gamma5 = mean(exp(Wu5))/(mean(exp(Wu5)) +
mean(exp(Wv5))))
}
}
}
}
return(cRes)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.