SiDia: Silicate Diagenesis in Marine Sediments

Description Usage Format Author(s) References See Also Examples

Description

Model describing the dynamics of biogenic and dissolved silicate in a marine sediment. (Soetaert and Herman, 2008).

The orignal model was described in (Schink et al., 1975). It was one of the first models dealing with the early diagenesis of silica.

The model is described in Soetaert and Herman (2008), chapter 3.6.5. Its R-implementation is in chapter 7.8.5.

Biogenic silicate (BSi), expressed in micromol l-1 solid, is mixed in the sediment (Bioturbation, 1st term) and dissolves (2nd term). The dissolution is first-order with BSi concentration and decreases linearly with increasing dissolved silicate concentration, until an equilibrium concentration (eqSi) is reached.

At the sediment-water interface, an amount of BSi is deposited (flux boundary condition). the deep boundary condition is a zero-gradient condition.

Dissolved silicate, in micromol l-1 liquid, and mixed by molecular diffusion (1st term), and produced by dissolution. At the upper boundary, a bottom water concentration is prescribed. At large depths, a zero-gradient boundary is imposed.

The model equations are:

dBSi/dt = 1/(1-phi_x) * (d/dx[(1-phi_x)*Db*dBSi/dx)]-lambda*BSi*(1-DSi/eqSi)

Flux_0=(1-phi_0)*Db*(dBSi/dx)_0

dBSi/dx|infinity=0

for biogenic silicate and

dDSi/dt = 1/phi_x * (d/dx((phi_x)*Ds*dDSi/dx))+lambda*BSi*(1-DSi/eqSi)*(1-phi_x)/phi_x)

DSi|0=BW

dDSi/dx|infinity=0

for dissolved silicate.

For the numerical approximation of these partial differential equations, see Soetaert and Herman, 2008

Usage

1

Format

An S4 object according to the odeModel specification.

The object contains the following slots:

The model is solved to steady-state using steady-state solver steady.1D from package rootSolve.

Author(s)

Karline Soetaert

References

Soetaert, K and P.M.J. Herman, 2009. A practical guide to ecological Modelling. Using R as a simulation platform. Springer. (Chapters 3.6.5 and 7.8.5)

Schink, D.R., Guinasso, N.L., Fanning, K.A., 1975. Processes affecting the concentration of silica at the sediment-water interface of the Atlantic Ocean. Journal of Geophysical Research, 80, 3013-3031.

See Also

R-package simecol for a description of the simObj class

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# create an instance of the model
mySiDia <- SiDia()

# show model code, parameter settings,...
print(mySiDia)

# Note that the model has a specialized solver function built in:
solver(mySiDia)

# Alternative way: 
#   use standard solver and pass additional parameters through sim
# solver(mySiDia) <- "SiDia_steady.1D"
# mySiDia <- sim(mySiDia, nspec=2, pos=TRUE)


#====================#
# 3 Model runs       #
#====================#

# three runs with different deposition rates
parms(mySiDia)["BSidepo"]     <- 0.2*100          # nmol/cm2/day
sol  <- out(sim(mySiDia))
BSi  <- sol$BSi
DSi  <- sol$DSi


parms(mySiDia)["BSidepo"]     <- 2*100          # nmol/cm2/day
sol  <- out(sim(mySiDia))
BSi  <- cbind(BSi,sol$BSi)
DSi  <- cbind(DSi,sol$DSi)

parms(mySiDia)["BSidepo"]     <- 3*100          # nmol/cm2/day
sol  <- out(sim(mySiDia))
BSi  <- cbind(BSi,sol$BSi)
DSi  <- cbind(DSi,sol$DSi)

#====================#
# plotting           #
#====================#
par(mfrow=c(2,2))

Depth    <- inputs(mySiDia)$boxes$Depth
Intdepth <- inputs(mySiDia)$boxes$Intdepth
Porosity <- inputs(mySiDia)$boxes$Porosity
Db       <- inputs(mySiDia)$boxes$Db

matplot(DSi,Depth,ylim=c(10,0),xlab="mmolSi/m3 Liquid",main="DSi",type="l",
        lwd=c(1,2,1),col="black")
matplot(BSi,Depth,ylim=c(10,0),xlab="mmolSi/m3 Solid" ,main="BSi",type="l",
        lwd=c(1,2,1),col="black")
legend("right",c("0.2","2","3"),title="Depo\n mmol/m2/d",lwd=c(1,2,1),lty=1:3)
plot(Porosity,Depth,ylim=c(10,0),xlab="-" ,main="Porosity",type="l",lwd=2)
plot(Db,Intdepth,ylim=c(10,0),xlab="cm2/d" ,main="Bioturbation",type="l",lwd=2)

simecolModels documentation built on May 2, 2019, 4:59 p.m.