bilisa.perm | R Documentation |
This function computes a permutation test to assess the statistical significance of the Local Moran Statistics.
bilisa.perm(x,y,listw,perm=999,FUN=mean,DESV=sd,...)
x |
A numeric vector |
y |
A numeric vector. This is the variable to be spatially lagged |
listw |
A |
perm |
Number of permutations |
FUN |
By defautl |
DESV |
Dispersion statistic. Defaults to |
... |
Further arguments passed to |
This function implements a conditional permutation test to assess the statistical significance of the bivariate LISA. This is a distribution free test that overcomes the limitations of the standard assumption of normality.
Returns a numeric matrix
Ii |
Values of the Local Moran Statistics |
p-val |
Pseudo p-values |
Zx |
Standardized values of |
Zly |
Standardized values of the spatial lag of |
There is no theoretical nor simulation work assessing the behavior of the Local Moran Staistic when the measure of central tendency is different from the mean.
Osmar Leandro Loaiza Quintero
lisa.perm, plot.lisaPerm
data(usinc)
require(spdep)
lw<-nb2listw(
poly2nb(usinc,queen=TRUE),style='W'
)
my_bilisa <- bilisa.perm(x=usinc$X1929, y=usinc$X2009, listw=lw)
plot(my_bilisa, usinc)
title(sub='State per capita income in 1929 vs. spatially lagged state per capita income in 2009')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.