steadyState | R Documentation |
A function to estimate the ergodic distribution, or steady state distribution vector, of a regular first order markov process.
steadyState(M, tol = 1e-10)
M |
An object of class |
tol |
A tolerance argument, used in determining the steady state distribution. By default set to 1e-100. |
The long run behavior of a first order Markov process is governed by the unitary eigenvalues associated with the
probability matrix. If an eigenvalue does not equal unity, but is very close to unity, the tolerance argument specifies
the maximum gap to be tolerated to regard an eigenvalue as equal to unity. Then this eigenvalue will govern the long run
behavior of the Markov process and, hence, will determine the steady state vector or ergodic distribution. The steadyState
function uses the eigen
function in the base package.
If an object of class markov
is provided, it returns a vector. If an objecto of class spMarkov
is provided,
it returns a matrix.
Osmar Leandro Loaiza Quintero
Restrepo, Patricia; Franco, Rosa and Munoz, Luz (2010). Algebra Lineal con Aplicaciones, Universidad Nacional de Colombia, Medellin.
spMarkov, markov, eigen
data(usinc)
stateVars<-names(usinc[,7:87])
stateNames<-c('Poor','Lower','Middle','Upper','Rich')
##Classic Markov Matrix
Mc<-markov(usinc, stateVars=stateVars,n.states=5,stateNames=stateNames)
steadyState(Mc)
##Spatial Markov Matrix
#Create a list of spatial weights
require(spdep)
lw<-nb2listw(poly2nb(usinc,queen=TRUE),style='W')
Msp<-spMarkov(usinc, lw, stateVars=stateVars,
n.states=5,stateNames=stateNames,
pool=TRUE,std=TRUE)
steadyState(Msp)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.