Description Usage Arguments Value Note See Also Examples
visHexGrid
is supposed to visualise a supra-hexagonal grid
1 2 3 4 5 6 7 8 9 10 | visHexGrid(
hbin,
area.size = 1,
border.color = NULL,
fill.color = NULL,
lty = 1,
lwd = 1,
lineend = "round",
linejoin = "round"
)
|
hbin |
an object of class "hexbin" |
area.size |
an inteter or a vector specifying the area size of each hexagon |
border.color |
the border color for each hexagon |
fill.color |
the filled color for each hexagon |
lty |
the line type for each hexagon. 0 for 'blank', 1 for 'solid', 2 for 'dashed', 3 for 'dotted', 4 for 'dotdash', 5 for 'longdash', 6 for 'twodash' |
lwd |
the line width for each hexagon |
lineend |
the line end style for each hexagon. It can be one of 'round', 'butt' and 'square' |
linejoin |
the line join style for each hexagon. It can be one of 'round', 'mitre' and 'bevel' |
invisible
none
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | # 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep('S',10), seq(1:10), sep="")
# 2) sMap resulted from using by default setup
sMap <- sPipeline(data=data)
# 3) create an object of "hexbin" class from sMap
dat <- data.frame(sMap$coord)
xdim <- sMap$xdim
ydim <- sMap$ydim
hbin <- hexbin::hexbin(dat$x, dat$y, xbins=xdim-1,
shape=sqrt(0.75)*ydim/xdim)
# 4) visualise hbin object
vp <- hexbin::hexViewport(hbin)
visHexGrid(hbin)
|
Loading required package: hexbin
Start at 2019-08-06 16:31:08
First, define topology of a map grid (2019-08-06 16:31:08)...
Second, initialise the codebook matrix (61 X 10) using 'linear' initialisation, given a topology and input data (2019-08-06 16:31:08)...
Third, get training at the rough stage (2019-08-06 16:31:08)...
1 out of 7 (2019-08-06 16:31:08)
updated (2019-08-06 16:31:08)
2 out of 7 (2019-08-06 16:31:08)
updated (2019-08-06 16:31:08)
3 out of 7 (2019-08-06 16:31:08)
updated (2019-08-06 16:31:08)
4 out of 7 (2019-08-06 16:31:08)
updated (2019-08-06 16:31:08)
5 out of 7 (2019-08-06 16:31:08)
updated (2019-08-06 16:31:08)
6 out of 7 (2019-08-06 16:31:08)
updated (2019-08-06 16:31:08)
7 out of 7 (2019-08-06 16:31:08)
updated (2019-08-06 16:31:08)
Fourth, get training at the finetune stage (2019-08-06 16:31:08)...
1 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
2 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
3 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
4 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
5 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
6 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
7 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
8 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
9 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
10 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
11 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
12 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
13 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
14 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
15 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
16 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
17 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
18 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
19 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
20 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
21 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
22 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
23 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
24 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
25 out of 25 (2019-08-06 16:31:09)
updated (2019-08-06 16:31:09)
Next, identify the best-matching hexagon/rectangle for the input data (2019-08-06 16:31:09)...
Finally, append the response data (hits and mqe) into the sMap object (2019-08-06 16:31:09)...
Below are the summaries of the training results:
dimension of input data: 100x10
xy-dimension of map grid: xdim=9, ydim=9, r=5
grid lattice: hexa
grid shape: suprahex
dimension of grid coord: 61x2
initialisation method: linear
dimension of codebook matrix: 61x10
mean quantization error: 4.46310602774253
Below are the details of trainology:
training algorithm: batch
alpha type: invert
training neighborhood kernel: gaussian
trainlength (x input data length): 7 at rough stage; 25 at finetune stage
radius (at rough stage): from 3 to 1
radius (at finetune stage): from 1 to 1
End at 2019-08-06 16:31:09
Runtime in total is: 1 secs
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.