stat_pithist | R Documentation |
geom_*
and stat_*
for Producing PIT Histograms with 'ggplot2'Various geom_*
and stat_*
used within
autoplot
for producing PIT histograms.
stat_pithist( mapping = NULL, data = NULL, geom = "pithist", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, freq = FALSE, style = c("bar", "line"), ... ) geom_pithist( mapping = NULL, data = NULL, stat = "pithist", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, freq = FALSE, style = c("bar", "line"), ... ) stat_pithist_expected( mapping = NULL, data = NULL, geom = "pithist_expected", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, scale = c("uniform", "normal"), freq = FALSE, ... ) geom_pithist_expected( mapping = NULL, data = NULL, stat = "pithist_expected", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, scale = c("uniform", "normal"), freq = FALSE, ... ) stat_pithist_confint( mapping = NULL, data = NULL, geom = "pithist_confint", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, scale = c("uniform", "normal"), level = 0.95, type = "approximation", freq = FALSE, style = c("polygon", "line"), ... ) geom_pithist_confint( mapping = NULL, data = NULL, stat = "pithist_confint", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, scale = c("uniform", "normal"), level = 0.95, type = "approximation", freq = FALSE, style = c("polygon", "line"), ... ) stat_pithist_simint( mapping = NULL, data = NULL, geom = "pithist_simint", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, freq = FALSE, ... ) geom_pithist_simint( mapping = NULL, data = NULL, stat = "pithist_simint", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, freq = FALSE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
geom |
The geometric object to use display the data |
position |
Position adjustment, either as a string, or the result of a call to a position adjustment function. |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
freq |
logical. If |
style |
character specifying the style of pithist. For |
... |
Other arguments passed on to |
stat |
The statistical transformation to use on the data for this layer, as a string. |
scale |
On which scale should the PIT residuals be computed: on the probability scale
( |
level |
numeric. The confidence level required. |
type |
character. Which type of confidence interval should be plotted: '"exact"' or '"approximation"'. According to Agresti and Coull (1998), for interval estimation of binomial proportions an approximation can be better than exact. |
if (require("ggplot2")) { ## Fit model data("CrabSatellites", package = "countreg") m1_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson) m2_pois <- glm(satellites ~ color, data = CrabSatellites, family = poisson) ## Compute pithist p1 <- pithist(m1_pois, type = "random", plot = FALSE) p2 <- pithist(m2_pois, type = "random", plot = FALSE) d <- c(p1, p2) ## Create factor main <- attr(d, "main") main <- make.names(main, unique = TRUE) d$group <- factor(d$group, labels = main) ## Plot bar style PIT histogram gg1 <- ggplot(data = d) + geom_pithist(aes(x = mid, y = observed, width = width, group = group), freq = TRUE) + geom_pithist_simint(aes(x = mid, ymin = simint_lwr, ymax = simint_upr), freq = TRUE) + geom_pithist_confint(aes(x = mid, y = observed, width = width), style = "line", freq = TRUE) + geom_pithist_expected(aes(x = mid, y = observed, width = width), freq = TRUE) + facet_grid(group ~ .) + xlab("PIT") + ylab("Frequency") gg1 gg2 <- ggplot(data = d) + geom_pithist(aes(x = mid, y = observed, width = width, group = group), freq = FALSE) + geom_pithist_simint(aes( x = mid, ymin = simint_lwr, ymax = simint_upr, y = observed, width = width ), freq = FALSE) + geom_pithist_confint(aes(x = mid, y = observed, width = width), style = "line", freq = FALSE) + geom_pithist_expected(aes(x = mid, y = observed, width = width), freq = FALSE) + facet_grid(group ~ .) + xlab("PIT") + ylab("Density") gg2 ## Plot line style PIT histogram gg3 <- ggplot(data = d) + geom_pithist(aes(x = mid, y = observed, width = width, group = group), style = "line") + geom_pithist_confint(aes(x = mid, y = observed, width = width), style = "polygon") + facet_grid(group ~ .) + xlab("PIT") + ylab("Density") gg3 }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.