plot.rootogram | R Documentation |
Generic plotting functions for rootograms of the class "rootogram"
computed by link{rootogram}
.
## S3 method for class 'rootogram' plot( x, style = NULL, scale = NULL, expected = NULL, ref = NULL, confint = NULL, confint_level = 0.95, confint_type = c("pointwise", "simultaneous"), confint_nrep = 1000, xlim = c(NA, NA), ylim = c(NA, NA), xlab = NULL, ylab = NULL, main = NULL, axes = TRUE, box = FALSE, col = "darkgray", border = "black", lwd = 1, lty = 1, alpha_min = 0.8, expected_col = 2, expected_pch = 19, expected_lty = 1, expected_lwd = 2, confint_col = "black", confint_lty = 2, confint_lwd = 1.75, ref_col = "black", ref_lty = 1, ref_lwd = 1.25, ... ) ## S3 method for class 'rootogram' autoplot( object, style = NULL, scale = NULL, expected = NULL, ref = NULL, confint = NULL, confint_level = 0.95, confint_type = c("pointwise", "simultaneous"), confint_nrep = 1000, xlim = c(NA, NA), ylim = c(NA, NA), xlab = NULL, ylab = NULL, main = NULL, legend = FALSE, theme = NULL, colour = "black", fill = "darkgray", size = 0.5, linetype = 1, alpha = NA, expected_colour = 2, expected_size = 1, expected_linetype = 1, expected_alpha = 1, expected_fill = NA, expected_stroke = 0.5, expected_shape = 19, confint_colour = "black", confint_size = 0.5, confint_linetype = 2, confint_alpha = NA, ref_colour = "black", ref_size = 0.5, ref_linetype = 1, ref_alpha = NA, ... )
x, object |
an object of class |
style |
character specifying the syle of rootogram. |
scale |
character specifying whether raw frequencies or their square roots (default) should be drawn. |
expected |
Should the expected (fitted) frequencies be plotted? |
ref |
logical. Should a reference line be plotted? |
confint |
logical. Should confident intervals be drawn? |
confint_level |
numeric. The confidence level required. |
confint_type |
character. Should |
confint_nrep |
numeric. The repetition number of simulation for computing the confidence intervals. |
xlim, ylim, xlab, ylab, main, axes, box |
graphical parameters. |
col, border, lwd, lty, alpha_min |
graphical parameters for the histogram style part of the base plot. |
expected_col, expected_pch, expected_lty, expected_lwd, ref_col, ref_lty, ref_lwd, expected_colour, expected_size, expected_linetype, expected_alpha, expected_fill, expected_stroke, expected_shape, ref_colour, ref_size, ref_linetype, ref_alpha, confint_col, confint_lty, confint_lwd, confint_colour, confint_size, confint_linetype, confint_alpha |
Further graphical parameters for the 'expected' and 'ref' line using either |
... |
further graphical parameters passed to the plotting function. |
legend |
logical. Should a legend be added in the |
theme |
Which 'ggplot2' theme should be used. If not set, |
colour, fill, size, linetype, alpha |
graphical parameters for the histogram style part in the |
Rootograms graphically compare (square roots) of empirical frequencies with expected (fitted) frequencies from a probability model.
Rootograms graphically compare frequencies of empirical distributions and
expected (fitted) probability models. For the observed distribution the histogram is
drawn on a square root scale (hence the name) and superimposed with a line
for the expected frequencies. The histogram can be "standing"
on the
x-axis (as usual), or "hanging"
from the expected (fitted) curve, or a
"suspended"
histogram of deviations can be drawn.
Friendly M (2000), Visualizing Categorical Data. SAS Institute, Cary.
Kleiber C, Zeileis A (2016). “Visualizing Count Data Regressions Using Rootograms.” The American Statistician, 70(3), 296–303. c("\Sexpr[results=rd,stage=build]tools:::Rd_expr_doi(\"#1\")", "10.1080/00031305.2016.1173590")\Sexpr{tools:::Rd_expr_doi("10.1080/00031305.2016.1173590")}.
Tukey JW (1977). Exploratory Data Analysis. Addison-Wesley, Reading.
rootogram
, procast
## speed and stopping distances of cars m1_lm <- lm(dist ~ speed, data = cars) ## compute and plot rootogram rootogram(m1_lm) ## customize colors rootogram(m1_lm, ref_col = "blue", lty = 2, pch = 20) #------------------------------------------------------------------------------- if (require("crch")) { ## precipitation observations and forecasts for Innsbruck data("RainIbk", package = "crch") RainIbk <- sqrt(RainIbk) RainIbk$ensmean <- apply(RainIbk[, grep("^rainfc", names(RainIbk))], 1, mean) RainIbk$enssd <- apply(RainIbk[, grep("^rainfc", names(RainIbk))], 1, sd) RainIbk <- subset(RainIbk, enssd > 0) ## linear model w/ constant variance estimation m2_lm <- lm(rain ~ ensmean, data = RainIbk) ## logistic censored model m2_crch <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0, dist = "logistic") ### compute rootograms FIXME #r2_lm <- rootogram(m2_lm, plot = FALSE) #r2_crch <- rootogram(m2_crch, plot = FALSE) ### plot in single graph #plot(c(r2_lm, r2_crch), col = c(1, 2)) } #------------------------------------------------------------------------------- ## determinants for male satellites to nesting horseshoe crabs data("CrabSatellites", package = "countreg") ## linear poisson model m3_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson) ## compute and plot rootogram as "ggplot2" graphic rootogram(m3_pois, plot = "ggplot2") #------------------------------------------------------------------------------- ## artificial data from negative binomial (mu = 3, theta = 2) ## and Poisson (mu = 3) distribution set.seed(1090) y <- rnbinom(100, mu = 3, size = 2) x <- rpois(100, lambda = 3) ## glm method: fitted values via glm() m4_pois <- glm(y ~ x, family = poisson) ## correctly specified Poisson model fit par(mfrow = c(1, 3)) r4a_pois <- rootogram(m4_pois, style = "standing", ylim = c(-2.2, 4.8), main = "Standing") r4b_pois <- rootogram(m4_pois, style = "hanging", ylim = c(-2.2, 4.8), main = "Hanging") r4c_pois <- rootogram(m4_pois, style = "suspended", ylim = c(-2.2, 4.8), main = "Suspended") par(mfrow = c(1, 1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.