| plot.pithist | R Documentation |
Generic plotting functions for probability integral transform (PIT)
histograms of the class "pithist" computed by link{pithist}.
## S3 method for class 'pithist'
plot(
x,
single_graph = FALSE,
style = NULL,
freq = NULL,
expected = TRUE,
confint = NULL,
confint_level = 0.95,
confint_type = c("exact", "approximation"),
simint = NULL,
xlim = c(NA, NA),
ylim = c(0, NA),
xlab = NULL,
ylab = NULL,
main = NULL,
axes = TRUE,
box = TRUE,
col = "black",
border = "black",
lwd = NULL,
lty = 1,
alpha_min = 0.2,
expected_col = NULL,
expected_lty = NULL,
expected_lwd = 1.75,
confint_col = NULL,
confint_lty = 2,
confint_lwd = 1.75,
confint_alpha = NULL,
simint_col = "black",
simint_lty = 1,
simint_lwd = 1.75,
...
)
## S3 method for class 'pithist'
lines(
x,
freq = NULL,
expected = FALSE,
confint = FALSE,
confint_level = 0.95,
confint_type = c("exact", "approximation"),
simint = FALSE,
col = "black",
lwd = 2,
lty = 1,
expected_col = "black",
expected_lty = 2,
expected_lwd = 1.75,
confint_col = "black",
confint_lty = 1,
confint_lwd = 1.75,
confint_alpha = 1,
simint_col = "black",
simint_lty = 1,
simint_lwd = 1.75,
...
)
## S3 method for class 'pithist'
autoplot(
object,
single_graph = FALSE,
style = NULL,
freq = NULL,
expected = NULL,
confint = NULL,
confint_level = 0.95,
confint_type = c("exact", "approximation"),
simint = NULL,
xlim = c(NA, NA),
ylim = c(0, NA),
xlab = NULL,
ylab = NULL,
main = NULL,
legend = FALSE,
theme = NULL,
colour = NULL,
fill = NULL,
size = NULL,
linetype = NULL,
alpha = NULL,
expected_colour = NULL,
expected_size = 0.75,
expected_linetype = NULL,
expected_alpha = NA,
confint_colour = NULL,
confint_fill = NULL,
confint_size = 0.75,
confint_linetype = NULL,
confint_alpha = NULL,
simint_colour = "black",
simint_size = 0.5,
simint_linetype = 1,
simint_alpha = NA,
...
)
single_graph |
logical. Should all computed extended reliability
diagrams be plotted in a single graph? If yes, |
style |
|
freq |
|
expected |
logical. Should the expected values be plotted as reference? |
confint |
|
confint_level |
numeric in |
confint_type |
character. Which type of confidence interval should be plotted: '"exact"' or '"approximation"'. According to Agresti and Coull (1998), for interval estimation of binomial proportions an approximation can be better than exact. |
simint |
|
xlim, ylim, xlab, ylab, main, axes, box |
graphical parameters. |
col, border, lwd, lty, alpha_min |
graphical parameters for the main part of the base plot. |
simint_col, simint_lty, simint_lwd, confint_col, confint_lty, confint_lwd, confint_alpha, expected_col, expected_lty, expected_lwd |
Further graphical parameters for the 'confint' and 'simint' line/polygon in the base plot. |
... |
further graphical parameters passed to the plotting function. |
object, x |
an object of class |
legend |
logical. Should a legend be added in the |
theme |
Which 'ggplot2' theme should be used. If not set, |
colour, fill, size, linetype, alpha |
graphical parameters for the histogram style part in the |
simint_colour, simint_size, simint_linetype, simint_alpha, confint_colour, confint_fill, confint_size, confint_linetype, expected_colour, expected_size, expected_linetype, expected_alpha |
Further graphical parameters for the 'confint' and 'simint' line/polygon using |
PIT histograms graphically evaluate the probability integral transform (PIT), i.e., the value that the predictive CDF attains at the observation, with a uniform distribution. For a well calibrated model fit, the observation will be drawn from the predictive distribution and the PIT will have a standard uniform distribution.
PIT histograms can be rendered as ggplot2 or base R graphics by using
the generics autoplot or plot.
For a single base R graphically panel, lines adds an additional PIT histogram.
Agresti A, Coull AB (1998). “Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions.” The American Statistician, 52(2), 119–126. doi: 10.1080/00031305.1998.10480550
Czado C, Gneiting T, Held L (2009). “Predictive Model Assessment for Count Data.” Biometrics, 65(4), 1254–1261. doi: 10.2307/2981683
Dawid AP (1984). “Present Position and Potential Developments: Some Personal Views: Statistical Theory: The Prequential Approach”, Journal of the Royal Statistical Society: Series A (General), 147(2), 278–292. doi: 10.2307/2981683
Diebold FX, Gunther TA, Tay AS (1998). “Evaluating Density Forecasts with Applications to Financial Risk Management”. International Economic Review, 39(4), 863–883. doi: 10.2307/2527342
Gneiting T, Balabdaoui F, Raftery AE (2007). “Probabilistic Forecasts, Calibration and Sharpness”. Journal of the Royal Statistical Society: Series B (Methodological). 69(2), 243–268. doi: 10.1111/j.1467-9868.2007.00587.x
pithist, procast, hist
## speed and stopping distances of cars
m1_lm <- lm(dist ~ speed, data = cars)
## compute and plot pithist
pithist(m1_lm)
## customize colors and style
pithist(m1_lm, expected_col = "blue", lty = 2, pch = 20, style = "line")
## add separate model
if (require("crch", quietly = TRUE)) {
m1_crch <- crch(dist ~ speed | speed, data = cars)
#lines(pithist(m1_crch, plot = FALSE), col = 2, lty = 2, confint_col = 2) #FIXME
}
#-------------------------------------------------------------------------------
if (require("crch")) {
## precipitation observations and forecasts for Innsbruck
data("RainIbk", package = "crch")
RainIbk <- sqrt(RainIbk)
RainIbk$ensmean <- apply(RainIbk[, grep("^rainfc", names(RainIbk))], 1, mean)
RainIbk$enssd <- apply(RainIbk[, grep("^rainfc", names(RainIbk))], 1, sd)
RainIbk <- subset(RainIbk, enssd > 0)
## linear model w/ constant variance estimation
m2_lm <- lm(rain ~ ensmean, data = RainIbk)
## logistic censored model
m2_crch <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0, dist = "logistic")
## compute pithists
pit2_lm <- pithist(m2_lm, plot = FALSE)
pit2_crch <- pithist(m2_crch, plot = FALSE)
## plot in single graph with style "line"
plot(c(pit2_lm, pit2_crch),
col = c(1, 2), confint_col = c(1, 2), expected_col = 3,
style = "line", single_graph = TRUE
)
}
#-------------------------------------------------------------------------------
## determinants for male satellites to nesting horseshoe crabs
data("CrabSatellites", package = "countreg")
## linear poisson model
m3_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)
## compute and plot pithist as "ggplot2" graphic
pithist(m3_pois, plot = "ggplot2")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.