mbo_tramnet: Model based optimization for regularized transformation...

View source: R/tramnet_mbo.R

mbo_tramnetR Documentation

Model based optimization for regularized transformation models

Description

Uses model based optimization to find the optimal tuning parameter(s) in a regularized transformation model based on cross-validated log-likelihoods. Here the 'tramnet' package makes use of the 'mlr3mbo' interface for Bayesian Optimization in machine learning problems to maximize the cv-logLik as a black-box function of the tuning parameters alpha and lambda.

Usage

mbo_tramnet(
  object,
  fold = 2,
  n_iter = 5,
  minlambda = 0,
  maxlambda = 16,
  minalpha = 0,
  maxalpha = 1,
  folds = NULL,
  noisy = FALSE,
  obj_type = c("lasso", "ridge", "elnet"),
  verbose = TRUE,
  ...
)

Arguments

object

Object of class "tramnet".

fold

Number of cross validation folds.

n_iter

Maximum number of iterations in model-based optimization routine.

minlambda

Minimum value for lambda (default minlambda = 0).

maxlambda

Maximum value for lambda (default maxlambda = 16).

minalpha

Minimum value for alpha (default minalpha = 0).

maxalpha

Maximum value for alpha (default maxalpha = 1).

folds

Self specified folds for cross validation (mainly for reproducibility and comparability purposes).

noisy

indicates whether folds for k-fold cross-validation should be random for each iteration, leading to a noisy objective function (default noisy = FALSE).

obj_type

Objective type, one of "lasso", "ridge" or "elnet".

verbose

Toggle for a verbose output (default verbose = TRUE)

...

Currently ignored.

Value

See Optimizer's optimize function which returns a data.table::data.table.


tramnet documentation built on Nov. 4, 2023, 3 p.m.

Related to mbo_tramnet in tramnet...