methods: S3 methods for class '"tramnet"'

logLik.tramnetR Documentation

S3 methods for class "tramnet"

Description

S3 methods for class "tramnet"

Usage

## S3 method for class 'tramnet'
logLik(
  object,
  parm = coef(object, tol = 0, with_baseline = TRUE),
  w = NULL,
  newdata = NULL,
  add_penalty = FALSE,
  ...
)

## S3 method for class 'tramnet'
coef(object, with_baseline = FALSE, tol = 1e-06, ...)

## S3 method for class 'tramnet_Lm'
coef(object, with_baseline = FALSE, tol = 1e-06, as.lm = FALSE, ...)

## S3 method for class 'tramnet'
predict(object, newdata = NULL, ...)

## S3 method for class 'tramnet'
simulate(object, nsim = 1, seed = NULL, newdata = NULL, bysim = TRUE, ...)

## S3 method for class 'tramnet'
estfun(
  x,
  parm = coef(x, with_baseline = TRUE, tol = 0),
  w = NULL,
  newdata = NULL,
  ...
)

## S3 method for class 'tramnet'
residuals(
  object,
  parm = coef(object, tol = 0, with_baseline = TRUE),
  w = NULL,
  newdata = NULL,
  ...
)

## S3 method for class 'tramnet'
print(x, ...)

## S3 method for class 'tramnet'
summary(object, ...)

## S3 method for class 'summary.tramnet'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

object

Object of class "tramnet".

parm

Parameters to evaluate the log likelihood at.

w

Optional vector of sample weights.

newdata

Data to evaluate the log likelihood at.

add_penalty

Whethr or not to return the penalized log-likelihood (default add_penalty = FALSE).

...

Ignored.

with_baseline

If TRUE, also prints coefficients for the baseline transformation.

tol

Tolerance when an estimate should be considered 0 and not returned (default tol = 1e-6).

as.lm

See coef.mlt

nsim

Number of simulations, see simulate.mlt.

seed

Random seed, see simulate.mlt.

bysim

Return by simulation, see simulate.mlt.

x

Object of class "tramnet".

digits

Number of digits to print.

Value

Returns (potentially weighted w) log-likelihood based on object evaluated at parameters parm and data newdata

Numeric vector containing the model shift parameter estimates

Numeric vector containing the linear model shift parameter estimates

Vector of predictions based on object evaluated at each row of newdata

Returns a list of data.frames containing parametric bootstrap samples of the response based on the data supplied in newdata

Matrix of score contributions w.r.t. model parameters evaluated at parm

Returns a numeric vector of residuals for each row in newdata

Object of class "summary.tramnet".

Object of class "summary.tramnet".

Invisible x.


tramnet documentation built on Nov. 4, 2023, 3 p.m.

Related to methods in tramnet...