LmNET | R Documentation |
Regularized transformation model classes
LmNET(
formula,
data,
lambda = 0,
alpha = 1,
tram_args = NULL,
constraints = NULL,
...
)
BoxCoxNET(
formula,
data,
lambda = 0,
alpha = 1,
tram_args = NULL,
constraints = NULL,
...
)
ColrNET(
formula,
data,
lambda = 0,
alpha = 1,
tram_args = NULL,
constraints = NULL,
...
)
SurvregNET(
formula,
data,
lambda = 0,
alpha = 1,
tram_args = NULL,
constraints = NULL,
...
)
CoxphNET(
formula,
data,
lambda = 0,
alpha = 1,
tram_args = NULL,
constraints = NULL,
...
)
LehmannNET(
formula,
data,
lambda = 0,
alpha = 1,
tram_args = NULL,
constraints = NULL,
...
)
PolrNET(
formula,
data,
lambda = 0,
alpha = 1,
tram_args = NULL,
constraints = NULL,
...
)
formula |
Formula specifying the regression. See |
data |
Object of class |
lambda |
A positive penalty parameter for the whole penalty function. |
alpha |
A mixing parameter (between zero and one) defining the fraction
between lasso and ridge penalties, where |
tram_args |
Additional arguments (besides |
constraints |
An optional list containing a matrix of linear inequality contraints on the regression coefficients and a vector specifying the rhs of the inequality. |
... |
Additional arguments passed to |
Object of class "tramnet"
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.