Description Usage Arguments Details Value Note Author(s) References See Also Examples
Modify the partitioning of an object as to optimize silhouette widths (distance based methods) or Dufrene and Legendre's indicator value (original data).
1 2 3 4 5 6 7 8 | ## S4 method for signature 'VegsoupPartition'
optsil(x, maxitr = 100, verbose = FALSE, ...)
## S4 method for signature 'VegsoupPartition'
optindval(x, maxitr = 100, minsiz = 5, verbose = FALSE, ...)
## S4 method for signature 'VegsoupPartition'
remos(x, lim = -0.001, method = 2, maxitr = Inf, verbose = FALSE, ...)
|
x |
|
maxitr |
integer. The maximum number of iterations to perform. |
verbose |
logical. Print elapsed CPU time. |
lim |
integer. A threshold of silhouette width for misclassified objects. It is basically close to zero but can be changed to any value between -1 and 0. |
method |
integer. 1 for REMOS1, 2 for REMOS2, defaults to 2. |
minsiz |
integer. The minimum size of the partition to consider reassigning a sample out of. |
... |
arguments passed to |
optsil
is a simple wrapper for function optsil
in package optpart to polish an existing clustering.
optindval
interfaces function optindval
in package optpart. This method maximizes the Dufrene and Legendre's indicator value (Indval).
remos
interfaces the REMOS1 and REMOS2 algorithms according to Lengyel et al. 2021.
Returns a modified object of class 'VegsoupPartition'
with optimized classification. This means an object having a possibly changed partitioning vector.
optsil
and optindval
can be very slow when applied to big data sets! optsil
is usually faster. remos(x, method = 2)
is the most time efficient algrithm.
Roland Kaiser, implemented for vegsoup using Dave W. Robert's optsil
and optindval
procedures of package optpart and Attila Lengyel's REMOS method.
Dufrene, M. and Legendre, P. 1997 Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67,345–366.
Lengyel, A., Roberts, D.W., Botta-Dukát, Z. Comparison of silhouette-based reallocation methods for vegetation classification. Journal of Vegetation Science, DOI:10.1111/jvs.12984.
Rousseeuw, P. 1987 Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 53,53–65.
Roberts, D. 2015 Vegetation classification by two new iterative reallocation optimization algorithms. Plant Ecology, 216,741–758.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | require(vegsoup)
data(windsfeld)
x <- VegsoupPartition(windsfeld, k = 5)
xs <- optsil(x, verbose = TRUE)
xi <- optindval(x, verbose = TRUE)
confusion(xs, xi)
xr <- remos(x, verbose = TRUE)
confusion(xs, xr)
x <- coenoflex(500, 300)
x <- VegsoupPartition(x, k = 10)
xr <- remos(x, verbose = TRUE)
confusion(x, xr)
op <- par(mfrow = c(1, 2), pty = "s")
plot(silhouette(x))
plot(silhouette(xr))
par(op)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.