Nothing
# Data pre-processing
data_prep = function(phyloseq, group, zero_cut, lib_cut, global = global) {
feature_table = abundances(phyloseq)
meta_data = meta(phyloseq)
# Drop unused levels
meta_data[] = lapply(meta_data, function(x)
if(is.factor(x)) factor(x) else x)
# Check the group variable
if (is.null(group)) {
if (global) {
stop("Please specify the group variable for the global test.")
}
} else {
n_level = length(unique(meta_data[, group]))
if (n_level < 2) {
stop("The group variable should have >= 2 categories.")
} else if (n_level < 3) {
global = FALSE
warning("The multi-group comparison will be deactivated as the group variable has < 3 categories.")
}
}
# Discard taxa with zeros >= zero_cut
zero_prop = apply(feature_table, 1, function(x)
sum(x == 0, na.rm = TRUE)/length(x[!is.na(x)]))
tax_del = which(zero_prop >= zero_cut)
if (length(tax_del) > 0) {
feature_table = feature_table[- tax_del, ]
}
# Discard samples with library size < lib_cut
lib_size = colSums(feature_table, na.rm = TRUE)
if(any(lib_size < lib_cut)){
subj_del = which(lib_size < lib_cut)
feature_table = feature_table[, - subj_del, drop = FALSE]
meta_data = meta_data[- subj_del, , drop = FALSE]
}
fiuo_prep = list(feature_table = feature_table,
meta_data = meta_data,
global = global)
return(fiuo_prep)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.