select.sig.gene: select differentially expressed genes based on p value and/or...

Description Usage Arguments Value Author(s) Examples

View source: R/select.sig.gene.R

Description

select differentially expressed genes based on p value and/or fold change

Usage

1
select.sig.gene(top.table, p.value =0.05, m.value =0)  

Arguments

top.table

an data frame returned from the regress function

p.value

p value, the default value is 0.05

m.value

fold change cut-off value, default value is 0

Value

A dataframe which is the similar to the one returned from regress function. An additional column 'significant' is added to the table from the "regress" function. If p value < p.value and absolute of fold change value >=m.value then signiicant = TRUE, otherwise, significant = FALSE.

Author(s)

Xiwei Wu xwu@coh.org, Xuejun Arthur Li xueli@coh.org

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
data(testData)
normaldata<-pre.process("rma",testData)
## Create design matrix
design<-make.design(pData(normaldata), "group")

## Create contrast matrix - Compare group "A" vs. "C"
contrast<-make.contrast(design, "A", "C")

## Identify differentially expressed gene by using LIMMA method
result<-regress(normaldata, design, contrast, "L")

## Select differentially expressed gene based on p <0.05 and 
## fold change >=log2(1.5)
select<-select.sig.gene(result, p.value=0.05, m.value=log2(1.5))

AffyExpress documentation built on Nov. 8, 2020, 7:50 p.m.