Description Usage Arguments Value Author(s) Examples
View source: R/select.sig.gene.R
select differentially expressed genes based on p value and/or fold change
1 | select.sig.gene(top.table, p.value =0.05, m.value =0)
|
top.table |
an data frame returned from the regress function |
p.value |
p value, the default value is 0.05 |
m.value |
fold change cut-off value, default value is 0 |
A dataframe which is the similar to the one returned from regress function. An additional column 'significant' is added to the table from the "regress" function. If p value < p.value and absolute of fold change value >=m.value then signiicant = TRUE, otherwise, significant = FALSE.
Xiwei Wu xwu@coh.org, Xuejun Arthur Li xueli@coh.org
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | data(testData)
normaldata<-pre.process("rma",testData)
## Create design matrix
design<-make.design(pData(normaldata), "group")
## Create contrast matrix - Compare group "A" vs. "C"
contrast<-make.contrast(design, "A", "C")
## Identify differentially expressed gene by using LIMMA method
result<-regress(normaldata, design, contrast, "L")
## Select differentially expressed gene based on p <0.05 and
## fold change >=log2(1.5)
select<-select.sig.gene(result, p.value=0.05, m.value=log2(1.5))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.