Description Usage Arguments Details Value Author(s) See Also Examples
View source: R/BASiCS_DenoisedCounts.R
Calculates denoised expression counts by removing cell-specific technical variation. The latter includes global-scaling normalisation and therefore no further normalisation is required.
1 | BASiCS_DenoisedCounts(Data, Chain, WithSpikes = TRUE)
|
Data |
An object of class |
Chain |
An object of class |
WithSpikes |
A logical scalar specifying whether denoised spike-in
genes should be generated as part of the output value. This only applies
when the |
See vignette browseVignettes("BASiCS")
A matrix of denoised expression counts. In line with global scaling normalisation strategies, these are defined as X_{ij}/(φ_j ν_j) for biological genes and X_{ij}/(ν_j) for spike-in genes. For this calculation φ_j ν_j are estimated by their corresponding posterior medians. If spike-ins are not used, φ_j is set equal to 1.
Catalina A. Vallejos cnvallej@uc.cl
Nils Eling eling@ebi.ac.uk
1 2 3 4 5 6 7 8 9 | Data <- makeExampleBASiCS_Data(WithSpikes = TRUE)
## The N and Burn parameters used here are optimised for speed
## and should not be used in regular use.
## For more useful parameters,
## see the vignette (\code{browseVignettes("BASiCS")})
Chain <- BASiCS_MCMC(Data, N = 1000, Thin = 10, Burn = 500,
Regression = FALSE, PrintProgress = FALSE)
DC <- BASiCS_DenoisedCounts(Data, Chain)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.