Description Usage Arguments Details Value Author(s) See Also Examples
To calculate p-value for null hypothesis that there is no interaction between gene and trait. There are MxT interactions between M genes and T traits. Results are given with 3 possibilities 1 for single p-value, and 3 for different types of correction. p-values are calculated based on the adjacency matrix for gene-gene interaction computed by function gene.trait.similarity.
1 | gene.trait.pvalue(EXP, trait, measure, method.permut = 2, n.replica = 400)
|
EXP |
Gene expression data in form of a matrix. Row stands for genes and column for experiments. |
trait |
Trait data in form of matrix. Row stands for traits and column for experiments. |
measure |
Metric used to calculate similarity: "corr" for correlation, "MI" for mutual information. |
method.permut |
A flag to indicate correction style when multiple hypotheses testing is considered. 1 for multiple traits correction, 2 for multiple genes and 3 for both genes and traits correction. The default value is 2. |
n.replica |
Number of permutations for the correction of multiple hypothesis testing; default value is 400. |
According to a permutation method, we use the empirical distribution of some statistics to estimate the p-value. For single p-value the empirical distribution is a vector of P (number of random replicates for each test) test values. It is then possible to correct p-value in different ways: method.permut = 1, it is the empirical distribution of a vector with length of TxP, corrects for the multiple traits tested; method.permut = 2, it is the empirical distribution of a vector with length of MxP, corrects for the multiple genes tested; method.permut = 3, it is empirical distribution of a vector with length of MxTxP, corrects for the multiple traits and genes tested.
single.perm.p.value |
A matrix of single p-values obtained with permutation method + beta distribution for extreme values (for MI) or obtained with the exact distribution computed directly by cor.test (for correlation) |
multi.perm.p.value |
A matrix of corrected p-values obtained with permutation method |
Yin Jin, Hesen Peng, Lei Wang, Raffaele Fronza, Yuanhua Liu and Christine Nardini
1 2 3 4 5 | data(tumors.mRNA)
data(tumors.miRNA)
exp<-tumors.mRNA
trait<-tumors.miRNA
gene.trait.pvalue(EXP=exp[1:10,],trait=trait[1:5,],measure="MI")
|
Loading required package: minet
$single.perm.p.value
hsa-let-7b hsa-let-7c hsa-let-7e hsa-let-7i
AFFX-HUMISGF3A/M97935_MB_at 0.7825 0.5975 0.0625 0.4825
AFFX-HUMISGF3A/M97935_3_at 0.7725 0.5875 0.5500 0.4700
AFFX-HSAC07/X00351_5_at 0.7775 0.6075 0.5825 0.4775
200001_at 0.7650 0.5525 0.5400 0.5225
200003_s_at 0.7625 0.4225 0.3850 0.5300
200006_at 0.7500 0.3900 0.5775 0.5675
200008_s_at 0.2050 0.3825 0.5800 0.4225
200009_at 0.0000 0.4225 0.4925 0.4850
200013_at 0.7550 0.4275 0.0725 0.4575
200014_s_at 0.7475 0.4325 0.5000 0.5500
hsa-mir-100
AFFX-HUMISGF3A/M97935_MB_at 0.7700
AFFX-HUMISGF3A/M97935_3_at 0.7850
AFFX-HSAC07/X00351_5_at 0.7650
200001_at 0.1500
200003_s_at 0.7625
200006_at 0.7575
200008_s_at 0.7600
200009_at 0.7700
200013_at 0.1650
200014_s_at 0.7550
$multi.perm.p.value
hsa-let-7b hsa-let-7c hsa-let-7e hsa-let-7i
AFFX-HUMISGF3A/M97935_MB_at 0.76725 0.57375 0.05825 0.46225
AFFX-HUMISGF3A/M97935_3_at 0.76725 0.57375 0.55525 0.46225
AFFX-HSAC07/X00351_5_at 0.76725 0.57375 0.55525 0.46225
200001_at 0.76725 0.57375 0.55525 0.55675
200003_s_at 0.76725 0.42275 0.41400 0.55675
200006_at 0.76725 0.42275 0.55525 0.55675
200008_s_at 0.18775 0.42275 0.55525 0.46225
200009_at 0.00000 0.42275 0.46875 0.46225
200013_at 0.76725 0.42275 0.05825 0.46225
200014_s_at 0.76725 0.42275 0.46875 0.55675
hsa-mir-100
AFFX-HUMISGF3A/M97935_MB_at 0.7660
AFFX-HUMISGF3A/M97935_3_at 0.7660
AFFX-HSAC07/X00351_5_at 0.7660
200001_at 0.1735
200003_s_at 0.7660
200006_at 0.7660
200008_s_at 0.7660
200009_at 0.7660
200013_at 0.1735
200014_s_at 0.7660
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.