Nothing
#' Similarity score genes based on pathways similarity
#'
#' Given two genes, calculates the Dice similarity between each pathway
#' which is combined to obtain a similarity between the genes.
#'
#' Given the information about the genes and their pathways, uses the ids
#' of the genes to find the Dice similarity score for each pathway comparison
#' between the genes. Later this similarities are combined using
#' \code{\link{combineScoresPar}}.
#' @inheritParams pathSim
#' @inheritParams combineScores
#' @export
#' @param genes A vector of genes.
#' @return \code{mgeneSim} returns the matrix of similarities between the genes
#' in the vector
#' @note genes accept named characters and the output will use the names of the
#' genes.
#' @seealso \code{\link{geneSim}}, \code{\link{conversions}} help page to transform Dice
#' score to Jaccard score. For the method to combine the scores see
#' \code{\link{combineScoresPar}}.
#' @examples
#' if (require("org.Hs.eg.db") & require("reactome.db")) {
#' # Extract the paths of all genes of org.Hs.eg.db from KEGG
#' # (last update in data of June 31st 2011)
#' genes.kegg <- as.list(org.Hs.egPATH)
#' # Extracts the paths of all genes of org.Hs.eg.db from reactome
#' genes.react <- as.list(reactomeEXTID2PATHID)
#' mgeneSim(c("81", "18", "10"), genes.react)
#' mgeneSim(c("81", "18", "10"), genes.react, "avg")
#' named_genes <- structure(c("81", "18", "10"),
#' .Names = c("ACTN4", "ABAT", "NAT2")
#' )
#' mgeneSim(named_genes, genes.react, "max")
#' } else {
#' warning("You need reactome.db and org.Hs.eg.db package for this example")
#' }
mgeneSim <- function(genes, info, method = "max", ...) {
if (length(unique(genes)) == 1) {
stop(
"Introduce several unique genes!\n",
"If you want to calculate one similarity ",
"between pathways use geneSim"
)
}
if (!all(is.character(genes))) {
stop("The input genes should be characters")
}
namgenes <- names(genes)
genes <- unique(genes)
if (!is.list(info)) {
stop("info should be a list. See documentation.")
}
if (all(!genes %in% names(info))) {
stop("Check genes are in the list provided.")
} else if (any(!genes %in% names(info))) {
warning("Some genes are not in the list provided.")
}
if (is.null(method)) {
method <- "max"
warning("Method to combine pathways can't be null, set to 'max'")
}
pathways <- info[names(info) %in% genes]
pathwaysl <- unique(unlist(pathways, use.names = FALSE))
pathwaysl <- pathwaysl[!is.na(pathwaysl)]
pathsSims <- mpathSim(pathwaysl, info, NULL)
sim <- combineScoresPar(pathsSims, method, pathways, ... = ...)
sim_all <- matrix(NA,
ncol = length(genes), nrow = length(genes),
dimnames = list(genes, genes)
)
sim <- AintoB(as.matrix(sim), sim_all)
if (!is.null(namgenes)) {
if (length(namgenes) != nrow(sim)) {
warning("Omitting gene names: duplicated names")
} else {
dimnames(sim) <- list(namgenes, namgenes)
}
}
sim
}
#' @describeIn mgeneSim Calculates all the similarities of the list and
#' combine them using \code{\link{combineScoresPar}}
#' @export
setMethod(
"mgeneSim",
c(info = "GeneSetCollection", genes = "character"),
function(genes, info, method, ...) {
if (length(genes) < 2) {
stop(
"Introduce several genes!\n",
"If you want to calculate one similarities ",
"between genes use geneSim"
)
}
if (length(unique(genes)) == 1) {
stop(
"Introduce several unique genes!\n",
"If you want to calculate one similarity ",
"between pathways use geneSim"
)
}
# Extract the ids
origGenes <- geneIds(info)
# Check that the genes are in the GeneSetCollection
genesU <- unique(unlist(origGenes, use.names = FALSE))
if (any(!genes %in% genesU)) {
return(NA)
}
# Simplify the GeneSetCollection
keep <- sapply(origGenes, function(x) {
any(genes %in% x)
})
gscGenes <- info[names(keep[keep])]
ids <- origGenes[keep]
# Search for the paths of each gene
paths <- lapply(genes, function(x) {
keepPaths <- sapply(ids, function(y) {
any(x %in% y)
})
names(keepPaths[keepPaths])
})
if (is.null(names(genes))) {
names(paths) <- genes
} else {
names(paths) <- names(genes)
}
# Calculate the pathSim of all the implied pathways
pathsSim <- mpathSim(info = gscGenes, method = NULL)
# Summarize the information
combineScoresPar(pathsSim, method, subSets = paths, ...)
}
)
#' @describeIn mgeneSim Calculates all the similarities of the list and
#' combine them using \code{\link{combineScoresPar}}
#' @export
setMethod(
"mgeneSim",
c(info = "GeneSetCollection", genes = "missing"),
function(info, method, ...) {
# Extract the name of the pathways per gene
paths <- inverseList(GSEABase::geneIds(info))
# Calculate the pathSim of all the implied pathways
pathsSim <- mpathSim(info = info, method = NULL)
# Summarize the information
combineScoresPar(pathsSim, method, subSets = paths, ...)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.