Description Details Author(s) References Examples
CAFE attempts to find chromosomal aberrations in microarray expression (mRNA) data. It contains several plotting functions to aid in visualizing these aberrations. It generally recapitulates the workflow described by Mayshar et al (see references), and implements several algorithms described by Friedrich et al (see references).
Package: | CAFE |
Type: | Package |
Version: | 0.6.9.5 |
Date: | 2013-05-16 |
License: | GPLv3 |
Sander Bollen
Friedrich, F., Kempe, a, Liebscher, V., & Winkler, G. (2008). Complexity Penalized M-Estimation. Journal of Computational and Graphical Statistics, 17(1), 201-224. doi:10.1198/106186008X285591
Mayshar, Y., Ben-David, U., Lavon, N., Biancotti, J.-C., Yakir, B., Clark, A. T., Plath, K., et al. (2010). Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell stem cell, 7(4), 521-31. doi:10.1016/j.stem.2010.07.017
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## Not run:
setwd("/some/path/to/cel/files")
data <- ProcessCels()
# process cel files
samples <- c(1,2)
# select samples 1 and 2 to compare against the rest
chromosomeStats(data,chromNum="ALL",samples=samples)
# check for chromosomal gains
chromosomeStats(data,chromNum="ALL",samples=samples,alternative="less")
# check for chromosomal losses
bandStats(data,chromNum=1,samples=samples)
# check for band gains in chr1
bandStats(data,chromNum=1,samples=samples,alternative="less")
# check for band losses in chr1
rawPlot(data,chromNum=1,samples=samples,idiogram=TRUE)
# plot raw data with an ideogram
slidPlot(data,chromNum=1,samples=samples,idiogram=TRUE,combine=TRUE,k=100)
# moving average plot with ideogram
discontPlot(data,chromNum=1,samples=samples,idiogram=TRUE)
# discontinuous plot with ideogram
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.