HyperparametersSingleBatch: Create an object of class 'HyperparametersSingleBatch' for...

Description Usage Arguments Value Examples

Description

Create an object of class 'HyperparametersSingleBatch' for the single batch mixture model

Usage

1
2
3
HyperparametersSingleBatch(k = 0L, mu.0 = 0, tau2.0 = 0.4,
  eta.0 = 32, m2.0 = 0.5, alpha, beta = 0.1, a = 1.8, b = 6,
  dfr = 100)

Arguments

k

length-one integer vector specifying number of components (typically 1 <= k <= 4)

mu.0

length-one numeric vector of the mean for the normal prior of the component means

tau2.0

length-one numeric vector of the variance for the normal prior of the component means

eta.0

length-one numeric vector of the shape parameter for the Inverse Gamma prior of the component variances. The shape parameter is parameterized as 1/2 * eta.0.

m2.0

length-one numeric vector of the rate parameter for the Inverse Gamma prior of the component variances. The rate parameter is parameterized as 1/2 * eta.0 * m2.0.

alpha

length-k numeric vector of the shape parameters for the dirichlet prior on the mixture probabilities

beta

length-one numeric vector for the parameter of the geometric prior for nu.0 (nu.0 is the shape parameter of the Inverse Gamma sampling distribution for the component-specific variances). beta is a probability and must be in the interval [0,1].

a

length-one numeric vector of the shape parameter for the Gamma prior used for sigma2.0 (sigma2.0 is the shape parameter of the Inverse Gamma sampling distribution for the component-specific variances)

b

a length-one numeric vector of the rate parameter for the Gamma prior used for sigma2.0 (sigma2.0 is the rate parameter of the Inverse Gamma sampling distribution for the component-specific variances)

dfr

length-one numeric vector for t-distribution degrees of freedom

Value

An object of class HyperparametersSingleBatch

Examples

1

CNPBayes documentation built on May 6, 2019, 4:06 a.m.