Description Usage Arguments Value Examples
The collection of copy number variants (CNVs) identified in a study
can be encapulated in a GRangesList, where each element is a
GRanges of the CNVs identified for an individual. (For a study
with 1000 subjects, the GRangesList object would have length 1000
if each individual had 1 or more CNVs.) For regions in which CNVs
occur in more than 2 percent of study participants, the start and
end boundaries of the CNVs may differ because of biological
differences in the CNV size as well as due to technical noise of
the assay and the uncertainty of the breakpoints identified by a
segmentation of the genomic data. Among subjects with a CNV called
at a given locus, the consensusCNP
function identifies the
largest region that is copy number variant in half of these
subjects.
1 2 | consensusCNP(grl, transcripts, min.width = 2000, max.width = 2e+05,
min.prevalance = 0.02)
|
grl |
A |
transcripts |
a |
min.width |
length-one integer vector specifying the minimum width of CNVs |
max.width |
length-one integer vector specifying the maximum width of CNVs |
min.prevalance |
a length-one numeric vector specifying the minimum prevalance of a copy number polymorphism. Must be in the interval [0,1]. If less that 0, this function will return all CNV loci regardless of prevalance. If greater than 1, this function will return a length-zero GRanges object |
a GRanges
object providing the intervals of all
identified CNPs above a user-specified prevalance cutoff.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | library(GenomicRanges)
##
## Simulate 2 loci at which CNVs are common
##
set.seed(100)
starts <- rpois(1000, 100) + 10e6L
ends <- rpois(1000, 100) + 10.1e6L
cnv1 <- GRanges("chr1", IRanges(starts, ends))
cnv1$id <- paste0("sample", seq_along(cnv1))
starts <- rpois(500, 1000) + 101e6L
ends <- rpois(500, 1000) + 101.4e6L
cnv2 <- GRanges("chr5", IRanges(starts, ends))
cnv2$id <- paste0("sample", seq_along(cnv2))
##
## Simulate a few other CNVs that are less common because they are
## very large, or because they occur in regions that in which copy
## number alerations are not common
##
cnv3 <- GRanges("chr1", IRanges(9e6L, 15e6L), id="sample1400")
starts <- seq(5e6L, 200e6L, 10e6L)
ends <- starts + rpois(length(starts), 25e3L)
cnv4 <- GRanges("chr1", IRanges(starts, ends),
id=paste0("sample", sample(1000:1500, length(starts))))
all_cnvs <- suppressWarnings(c(cnv1, cnv2, cnv3, cnv4))
grl <- split(all_cnvs, all_cnvs$id)
## Not run:
cnps <- consensusCNP(grl)
##
## 2nd CNP is filtered because of its size
##
truth <- GRanges("chr1", IRanges(10000100L, 10100100L))
seqinfo(truth) <- seqinfo(grl)
identical(cnps, truth)
## End(Not run)
##
## Both CNVs identified
##
## Not run:
cnps <- consensusCNP(grl, max.width=500e3)
## End(Not run)
truth <- GRanges(c("chr1", "chr5"),
IRanges(c(10000100L, 101000999L),
c(10100100L, 101400999L)))
seqlevels(truth, pruning.mode="coarse") <- seqlevels(grl)
seqinfo(truth) <- seqinfo(grl)
## Not run:
identical(cnps, truth)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.