inst/doc/WGCNA_from_TCGA_RNAseq.R

## ---- eval=FALSE-----------------------------------------------------------
#  RNAseq = RNAseq[apply(RNAseq,1,function(x) sum(x==0))<ncol(RNAseq)*0.8,]

## ---- eval=FALSE-----------------------------------------------------------
#  library(limma)
#  RNAseq_voom = voom(RNAseq)$E

## ---- eval=FALSE-----------------------------------------------------------
#  #transpose matrix to correlate genes in the following
#  WGCNA_matrix = t(RNAseq_voom[order(apply(RNAseq_voom,1,mad), decreasing = T)[1:5000],])

## ---- eval=FALSE-----------------------------------------------------------
#  #similarity measure between gene profiles: biweight midcorrelation
#  library(WGCNA)
#  s = abs(bicor(WGCNA_matrix))

## ---- eval=FALSE-----------------------------------------------------------
#  powers = c(c(1:10), seq(from = 12, to=20, by=2))
#  sft = pickSoftThreshold(WGCNA_matrix, powerVector = powers, verbose = 5)
#  plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
#       xlab='Soft Threshold (power)',ylab='Scale Free Topology Model Fit,signed R^2',
#       type='n', main = paste('Scale independence'));
#  text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
#       labels=powers,cex=1,col='red'); abline(h=0.90,col='red')

## ---- eval=FALSE-----------------------------------------------------------
#  #calculation of adjacency matrix
#  beta = 3
#  a = s^beta

## ---- eval=FALSE-----------------------------------------------------------
#  #dissimilarity measure
#  w = 1-a

## ---- eval=FALSE-----------------------------------------------------------
#  #create gene tree by average linkage hierarchical clustering
#  geneTree = hclust(as.dist(w), method = 'average')
#  
#  #module identification using dynamic tree cut algorithm
#  modules = cutreeDynamic(dendro = geneTree, distM = w, deepSplit = 4, pamRespectsDendro = FALSE,
#                              minClusterSize = 30)
#  #assign module colours
#  module.colours = labels2colors(modules)
#  
#  #plot the dendrogram and corresponding colour bars underneath
#  plotDendroAndColors(geneTree, module.colours, 'Module colours', dendroLabels = FALSE, hang = 0.03,
#                      addGuide = TRUE, guideHang = 0.05, main='')

## ---- eval=FALSE-----------------------------------------------------------
#  library(ape)
#  #calculate eigengenes
#  MEs = moduleEigengenes(WGCNA_matrix, colors = module.colours, excludeGrey = FALSE)$eigengenes
#  
#  #calculate dissimilarity of module eigengenes
#  MEDiss = 1-cor(MEs);
#  
#  #cluster module eigengenes
#  METree = hclust(as.dist(MEDiss), method = 'average');
#  
#  #plot the result with phytools package
#  par(mar=c(2,2,2,2))
#  plot.phylo(as.phylo(METree),type = 'fan',show.tip.label = FALSE, main='')
#  tiplabels(frame = 'circle',col='black', text=rep('',length(unique(modules))), bg = levels(as.factor(module.colours)))

## ---- eval=FALSE-----------------------------------------------------------
#  #load clinical metadata. Make sure that patient barcodes are in the same format
#  #create second expression matrix for which the detailed clinical data is available
#  WGCNA_matrix2 = WGCNA_matrix[match(clinical$Name, rownames(WGCNA_matrix)),]
#  
#  #CAVE: 1 sample of detailed clinical metadata is not in downloaded data (TCGA-GN-A269-01')
#  not.available = which(is.na(rownames(WGCNA_matrix2))==TRUE)
#  WGCNA_matrix2 = WGCNA_matrix2[-not.available,]
#  str(WGCNA_matrix2)
#  
#  #hence it needs to be removed from clinical table for further analysis
#  clinical = clinical[-not.available,]

## ---- eval=FALSE-----------------------------------------------------------
#  #grouping in high and low lymphocyte score (lscore)
#  lscore = as.numeric(clinical$LYMPHOCYTE.SCORE)
#  lscore[lscore<3] = 0
#  lscore[lscore>0] = 1
#  
#  #calculate gene significance measure for lymphocyte score (lscore) - Welch's t-Test
#  GS_lscore = t(sapply(1:ncol(WGCNA_matrix2),function(x)c(t.test(WGCNA_matrix2[,x]~lscore,var.equal=F)$p.value,
#                                            t.test(WGCNA_matrix2[,x]~lscore,var.equal=F)$estimate[1],
#                                            t.test(WGCNA_matrix2[,x]~lscore,var.equal=F)$estimate[2])))
#  GS_lscore = cbind(GS.lscore, abs(GS_lscore[,2] - GS_lscore[,3]))
#  colnames(GS_lscore) = c('p_value','mean_high_lscore','mean_low_lscore',
#                          'effect_size(high-low score)'); rownames(GS_lscore) = colnames(WGCNA_matrix2)

## ---- eval=FALSE-----------------------------------------------------------
#  #reference genes = all 5000 top mad genes
#  ref_genes = colnames(WGCNA_matrix2)
#  
#  #create data frame for GO analysis
#  library(org.Hs.eg.db)
#  GO = toTable(org.Hs.egGO); SYMBOL = toTable(org.Hs.egSYMBOL)
#  GO_data_frame = data.frame(GO$go_id, GO$Evidence,SYMBOL$symbol[match(GO$gene_id,SYMBOL$gene_id)])
#  
#  #create GOAllFrame object
#  library(AnnotationDbi)
#  GO_ALLFrame = GOAllFrame(GOFrame(GO_data_frame, organism = 'Homo sapiens'))
#  
#  #create gene set
#  library(GSEABase)
#  gsc <- GeneSetCollection(GO_ALLFrame, setType = GOCollection())
#  
#  #perform GO enrichment analysis and save results to list - this make take several minutes
#  library(GEOstats)
#  GSEAGO = vector('list',length(unique(modules)))
#  for(i in 0:(length(unique(modules))-1)){
#    GSEAGO[[i+1]] = summary(hyperGTest(GSEAGOHyperGParams(name = 'Homo sapiens GO',
#                geneSetCollection = gsc, geneIds = colnames(RNAseq)[modules==i],
#                universeGeneIds = ref.genes, ontology = 'BP', pvalueCutoff = 0.05,
#                conditional = FALSE, testDirection = 'over')))
#    print(i)
#  }
#  
#  cutoff_size = 100
#  
#  GO_module_name = rep(NA,length(unique(modules)))
#  for (i in 1:length(unique(modules))){
#    GO.module.name[i] =
#      GSEAGO[[i]][GSEAGO[[i]]$Size<cutoff_size,
#      ][which(GSEAGO[[i]][GSEAGO[[i]]$Size<cutoff_size,]$Count==max(GSEAGO[[i]][GSEAGO[[i]]$
#      Size<cutoff.size,]$Count)),7]
#  }
#  
#  GO.module.name[1] = 'module 0'
#  

## ---- eval=FALSE-----------------------------------------------------------
#  #calculate module significance
#  MS.lscore = as.data.frame(cbind(GS.lscore,modules))
#  MS.lscore$log_p_value = -log10(as.numeric(MS.lscore$p_value))
#  MS.lscore = ddply(MS.lscore, .(modules), summarize, mean(log_p_value), sd(log_p_value))
#  colnames(MS.lscore) = c('modules','pval','sd')
#  MS.lscore.bar = as.numeric(MS.lscore[,2])
#  MS.lscore.bar[MS.lscore.bar<(-log10(0.05))] = 0
#  names(MS.lscore.bar) = GO.module.name
#  
#  METree.GO = METree
#  label.order = match(METree$labels,paste0('ME',labels2colors(0:(length(unique(modules))-1))))
#  METree.GO$labels = GO.module.name[label.order]
#  plotTree.wBars(as.phylo(METree.GO), MS.lscore.bar, tip.labels = TRUE, scale = 0.2)

## ---- eval=FALSE-----------------------------------------------------------
#  #Calculate module membership
#  MM = abs(bicor(RNAseq, MEs))
#  
#  #plot individual module of interest (MOI)
#  MOI = 3 #T cell differentiation co-expression module
#  plot(-log10(GS.lscore[modules==MOI,1]), MM[modules==MOI,MOI], pch=20,
#       cex=(GS.lscore[modules==MOI,4]/max(GS.lscore[,4],na.rm=TRUE))*4,
#       xlab='p-value (-log10) lymphocyte score', ylab='membership to module 3')
#  abline(v=-log10(0.05), lty=2, lwd=2)

## --------------------------------------------------------------------------
sessionInfo()

Try the CVE package in your browser

Any scripts or data that you put into this service are public.

CVE documentation built on Nov. 17, 2017, 1:45 p.m.