Description Usage Arguments Value Author(s) References Examples
Find posterior probability threshold to control FDR
1 | crit.fun(x, cc)
|
x |
x is one minus the posterior probabilities of being in a specific DE pattern. If there is only one DE pattern, then x is the posterior probabilities of being EE. |
cc |
cc is FDR to be controlled. For example, to control FDR at 0.05, set cc=0.05. |
crit.fun
returns a threshold so that if used in identifying
genes in a specific DE pattern, FDR can be controlled at cc.
Those genes with posterior probability of being in that
specific DE pattern greater than this threshold are claimed to be
in that specific DE pattern.
Ming Yuan, Ping Wang, Deepayan sarkar, Michael Newton, and Christina Kendziorski
Newton, M.A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture model. Biostatistics 5, 155-176.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | data(gould)
pattern <- ebPatterns(c("1,1,1,0,0,0,0,0,0,0",
"1,2,2,0,0,0,0,0,0,0"))
gg.em.out <- emfit(gould, family = "GG", hypotheses = pattern, num.iter = 10)
gg.post.out <- postprob(gg.em.out, gould)$pattern
gg.crit <- crit.fun(gg.post.out[,1],0.05)
# number of DE genes
sum(gg.post.out[,2] > gg.crit)
pattern4 <- ebPatterns(c("1, 1, 1, 1, 1, 1, 1, 1, 1, 1",
"1, 2, 2, 2, 2, 2, 2, 2, 2, 2",
"1,2,2,1,1,1,1,1,2,2",
"1,1,1,1,1,1,1,1,2,2"))
gg4.em.out <- emfit(gould, family = "GG", pattern4, num.iter = 10)
gg4.post.out <- postprob(gg4.em.out, gould)$pattern
gg4.crit <- crit.fun(1-gg4.post.out[,2], 0.05)
# number of genes in pattern 2, a DE pattern
sum(gg4.post.out[,2] > gg4.crit)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.